時間:2023-12-02 09:28:37
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇量化投資基本面分析方法范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
什么是量化投資?簡單來講,量化投資就是利用計算機科技并結合一定的數學模型去實現投資理念與投資策略的過程。與傳統的投資方法不同的是:傳統的方法主要有基本面分析法和技術分析法這兩種,而量化投資主要依靠數據和模型來尋找投資標的和投資策略。量化投資系統則是由人設定出某種規則,在計算機當中根據規則構建這種模型,而后由計算機自己去根據市場的情況進行一些投資機會的判斷。從他們投資方式的區別當中可以看出,量化投資更依賴于數據,傳統投資則更依賴于人的主觀判斷。從這點上來說,量化投資可以有效的規避一些人為的錯誤判斷。
二、我國量化投資體系的發展
在美國,量化投資方法的發展己經有將近年的歷史,量化方法從允嫉較衷謖嫉矯攔市場30%上以上的比重。而在中國,量化投資只是剛剛起步而己。但是已經有很多基金公司允即罅Υ蛟熳約旱牧炕投資團隊,期望在傳統的基本面研究之外源匆黃新的投資天地。國內證券市場上成立比較早的量化投資基金主要包括:嘉實基金――嘉實量化阿爾法股票、上投摩根基金管理有限公司――上投摩根阿爾法、光大保德信基金――光大量化、富國基金管理有限公司――富國滬深增強、國泰君安資產管理公司――君享量化。近年來,一些公募基金、私募基金也都不斷加快了布局量化投資基金的方法。這些量化投資基金,主要研究了基于基本面的多因子選股模型,這些投資組合因子主要包括:公司財務基本面數據,市場行情數據,行業數據等,并在實證中不斷完善量化投資指標因子的選取。研究行業以及個股的價格趨勢,運用道氏理論、K線理論、波浪理論、切線理論、形態理論等一些常用的技術分析方法建立不同風格的投資模型和投資組合。
三、量化投資的優點
量化投資作為一種有效的主動投資工具,是對定性投資方式的繼承和發展。實踐中的定性投資是指,以深入的宏觀經濟和市場基本面分析為核心,輔以對上市公司的實地調研、與上市公司管理層經營理念的交流,發表各類研究報告作為交流手段和決策依據。因此,定性投資基金的組合決策過程是由基金經理在綜合各方面的市場信息后,依賴個人主觀判斷、直覺以及市場經驗來優選個股,構建投資組合,以獲取市場的超額收益。與定性投資相同,量化投資的基礎也是對市場基本面的深度研究和詳盡分析,其本質是一種定性投資思想的理性應用。但是,與定性投資中投資人僅依靠幾個指標做出結論相比,量化投資中投資人更關注大量數據所體現出來的特征,特別是挖掘數據中的統計特征,以尋找經濟和個股的運行路徑,進而找出阿爾法盈利空間。與定性投資相比,量化投資具有以下優勢:
(一)量化投資可以讓理性得到充分發揮
量化投資以數學統計和建模技術代替個人主觀判斷和直覺,能夠保持客觀、理性以及一致性,克服市場心理的影響。將投資決策過程數量化能夠極大地減少投資者情緒對投資決策的影響,避免在市場悲觀或非理性繁榮的情況下做出不理智的投資決策,因而避免了不當的市場擇時傾向。
(二)是量化投資可以實現全市場范圍內的擇股和高效率處理
量化投資可以利用一定數量化模型對全市場范圍內的投資對象進行篩選,把握市場中每個可能的投資機會。而定性投資受人力、精力和專業水平的限制,其選股的覆蓋面和正確性遠遠無法和量化投資相比。
(三)是量化投資更注重組合風險管理
量化投資的三步選擇過程,本身就是在嚴格的風險控制約束條件下選擇投資組合的過程,能夠保證在實現期望收益的同時有效地控制風險水平。另外,由于量化投資方式比定性投資方式更少的依賴投資者的個人主觀判斷,就避免了由于人為誤判和偏見產生的交易風險。當然,無論是定性投資還是量化投資,只要得當的應用都可以獲取阿爾法超額收益,二者之間并不矛盾,相反可以互相補充。量化投資的理性投資風格恰可作為傳統投資方式的補充。
四、量化投資的局限性
量化投資是一種非常高效的工具,其本身的有效性依賴于投資思想是否合理有效,因此換言之,只要投資思想是正確的,量化投資本身并不存在缺陷。但是在對量化投資的應用中,確實存在過度依賴的風險。量化投資本身是一種對基本面的分析,與定性分析相比,量化分析是一種高效、無偏的方式,但是應用的范圍較為狹窄。例如,某項技術在特定行業、特定市場中的發展前景就難以用量化的方式加以表達。通常量化投資的選股范圍涵蓋整個市場,因此獲得的行業和個股配置中很可能包含投資者不熟悉的上市公司。這時盲目的依賴量化投資的結論,依賴歷史的回歸結論以及一定指標的篩選,就有可能忽略不能量化的基本面,產生巨大的投資失誤。因此,基金經理在投資的時候一定要注意不能單純依賴量化投資,一定要結合對國內市場基本面的了解。
五、量化投資對中國的啟示
通過研究國外市場的發展和中國市場的特點,對中國市場上的監管創新,制定相關的法律法規也勢在必行。由于市場結構的差異,國內量化投資情況與國外有很大不同。技術型量化投資的應用主要是集中在期貨市場,并且有較高的推崇程度;金融型量化投資的應用主要集中在股票市場,由于需要應用的時間數據周期相對較長,實際中應用并不普遍。目前,中國金融市場正處于迅速發展的階段,很多新的金融工具在不斷被引進,用量化投資方式來捕捉這種機會,也是非常合理的。與國外相比,目前國內股票市場僅屬于非有效或弱有效市場,非理性投資行為依然普遍存在,將行為金融理論引入國內證券市場是非常有意義的。國內有很多實證文獻討論國內A股市場未達到半強勢有效市場。
目前對中國市場特點的一般共識包括:首先,中國市場是一個個人投資者比例非常高的市場,這意味著市場情緒可能對中國市場的影響特別大。其次,中國作為一個新興市場,各方面的信息搜集有很大難度,有些在國外成熟市場唾手可得的數據,在中國市場可能需要自主開發。這盡管加大了工作量,但也往往意味著某些指標關注的人群少,存在很大機會。其三,中國上市公司的主營比較繁雜,而且變化較快,這意味著行業層面的指標可能效率較低。而中國的量化投資實際上就是從不同的層面驗證這幾點,并從中贏利。例如,考慮到國內A股市場個人投資者較多的情況,我們可以通過分析市場情緒因素的來源和特征指標,構建市場泡沫度模型,并以此判斷市場泡沫度,作為資產配置和市場擇時的重要依據。
在中國金融市場的不斷發展階段,融資融券和股指期貨的推出結束了中國金融市場不能做空的歷史,量化投資策略面臨著重大機遇。運用量化投資的機理和方法,將成為中國市場未來投資策略的一個重要發展趨勢。量化投資在給投資者進行規避風險和套利的同時,也會帶來一定的風險,對證券具有助漲助跌的作用。由于國內股票市場還不夠成熟,量化投資在中國的適用性很大程度上取決于投資小組的決策能力和創造力。以經濟政策對中國量化投資的影響為例。中國的股市有“政策市”之稱,中國股市的變化極大的依賴于政府經濟政策的調節,但是經濟政策本身是無法量化的。基金建倉應早于經濟政策的施行,而基于對經濟政策的預期,但預期的影響比經濟政策的影響更難以量化。例如,在現階段勞動力成本不斷上升、國際局勢動蕩、國際大宗商品價格上升的情況下,央行何時采取什么力度的加息手段,對市場有何種程度的影響,這一沖擊是既重要又無法量化的。為解決這個在中國利率非市場化特點下出現的問題,需要基金投資小組采取創造性的方式,將對中國經濟多年的定性經驗和定量的指標體系結合起來,方能提高投資業績。
參考文獻:
國內的公募量化基金在沉寂4年之后重現江湖:2月份,嘉實量化阿爾法發行,于4月成立;5月份中海量化發行,于6月份成立。私募基金也不甘落后,中國第一只量化陽光私募產品――“山東信托•紅色量化一號”證券投資集合資金信托計劃6月1日正式成立。
據悉,國內一些公司正在積極申報量化產品不久將還會有量化基金發行。
作為“舶來品”的量化基金,其前世今生如何?
國外量化基金發展迅速
量化基金即以數量化投資來進行管理的基金,數量化投資區別于基本面投資,它不是通過“信息和個人判斷”來管理資產,而是遵循固定規則,由計算機模型產生投資決策。量化投資并不是基本面分析的對立者,90%的模型是基于基本面因素,同時考慮技術因素。由此可見,它也不是技術分析,而是基于對市場深入理解形成的合乎邏輯的投資方法。
數量化技術發源于20世紀70年代,以1971年富國銀行發行跟蹤紐約證券交易所1500只股票的指數基金為標志,此后隨著計算機處理能力的提高,越來越多的物理學家和數學家離開學校被華爾街雇傭,基金經理們開始依靠電腦來篩選股票。
1979年巴克菜全球投資成立了第一支主動數量投資基金標志著量化投資由草根實踐走到了公募基金歷史舞臺聚光燈下。
根據Bloomberg的數據,截至2008年底,1184只數量化基金管理的總資產高達1848億美元,相比1998年21只數量化基金管理的80億美元資產來說,平均增長速度高達20%,而同期非數量化基金的年增長速度僅為8%。
2000年之后是數量化基金發展的黃金時期,無論是個數還是管理規模都有了跨越式的發展。1998年數量化基金僅136只,至2002年增長一倍多,達316只,2008年底更是達到1848只,1988年至1998年年平均增長率為46%,2000年至2008年年平均增長幅度達54%。從規模上來看,1988年至1998年年平均增長率為32%,2000年至2008年年平均增長幅度達49%。
其中的原因有二:一是,2000年之后計算機技術飛速發展,為數量化的應用提供了良好的平臺。更為主要的是主動管理型基金很難戰勝大盤,于是投資指數基金以及采用數量化方法篩選股票逐漸流行起來。而且數量化基金的表現也非常不錯。2002年至2007年5年間,相比美國市場主動型管理基金每年5.93%的超額收益,那些覆蓋所有資產的數量化基金每年的超額收益可以達到6.95%。二是,有研究表明,2004年至2007年,投資美國大盤股的數量化基金產品的表現平均超越非大盤主動型基金103個基點。
量化基金的心臟
數量化基金的興起,建立在數量化投資技術的發展之上。
數量化基金最明顯的優勢之一就是計算機處理數據的能力遠遠勝過人腦,這使電腦在海量股票選擇中占有絕對優勢。例如,在嘉信證券的股票評級系統跟蹤的股票超過3000只,并且每只股票都綜合了基本面、估值、動量和風險因素進行打分,并按分數高低給A至F不同的評級。其次,量化基金是以定量投資為主,用紀律性較強的精細化定量模型,代替了基金經理或分析師在定性層面的主觀判斷,使投資業績較少受到個人“熟悉度偏好”的影響。最后,數量化基金收取的費率及管理費用比傳統的主動型基金低很多,因為他們需要的研究人員更少,成本更低。據Lipper調查,數量化基金的平均費用是1.32%,相比而言,主動型基金的管理費用平均達到1.46%。
針對不同市場設計數量化的投資管理模型,以電腦運算為主導,并在全球各種市場上進行短線交易,正是西蒙斯的成功秘訣。
然而量化基金并非在所有市場都能有效戰勝非量化基金。Lipper把基金分為4類型,將每一類型的量化投資與傳統投資進行比較,2005年量化投資基金全面戰勝傳統基金,而2006年在增強指數型基金中,量化投資落后于傳統型基金,到2007年則情況發生較大轉彎,除市場中立基金外,其余量化投資基金全部跑輸傳統型基金。在考慮了風險、跟蹤誤差后,數量化投資具有更小的跟蹤誤差和更高的回報。研究表明數量投資基金業績具有很強的輪動特點。大部分數量投資基金具有很強的價值投資偏好,因此,他們在價值型市場下表現良好,而1998-1999年是成長型市場,數量化投資基金大部分跑輸傳統型基金。2001-2005年是價值型市場,數量化投資基金普遍表現優異。
國內量化基金端倪
目前,國內基金市場上有4只量化基金,光大保德信量化核心、上投摩根阿爾法、嘉實量化阿爾法、中海量化策略,其中后兩只均是今年才成立,前兩只分別成立于2004年8月和2005年10月。
光大保德信量化核心一方面通過光大保德信的多因素數量模型對股票的預期收益率進行估算,個股預期收益率的高低決定投資組合是否持有股票;另一方面,投資團隊從風險控制角度,重點關注數據以來的信息,通過行業分析和個股分析形成對量化的補充;最后由投資組合優化器根據預先設計的風險構建組合。
上投摩根阿爾法基金的描述則是同步以“成長”與“價值”雙重量化指標進行股票選擇,然后研究團隊將對個股進行基本面審核,結合跟蹤誤差的緊密監控,以求不論指數高低,市場多空皆創造主動管理回報。投研團隊最終決定進入組合的股票,量化分析是輔助和基礎。
嘉實量化基金“定量投資”為主,輔以“定性投資”。通過行業選擇模型,捕捉具有投資吸引力的行業,然后再在所選行業中運用Alpha多因素模型篩選個股。定性的輔助作用表現在利用基本面研究成果,對模型自動選股的結果進行復核,剔除掉滿足某些特殊條件的股票。
這些人,因其使用高等數學手段決定億萬計資金的投向,而在30年前贏得“火箭科學家”名聲。在外人看來,他們有些像中世紀的煉金術師:給他們數據,他們還給你美元!
華爾街的數學傳說
實際上,在華爾街上管理資金規模最大的量化技術,并非那么不可捉摸:眾多公司使用“因子加總模型”輔助他們選擇股票。
這種方法大多基于Fama-French的開創性論文,其基本思想很簡單:依據各項基本面指標對于歷史上超額回報的貢獻程度,來決定這些基本面指標在選出“超級股票”上的“有效性”,并據此賦予這些指標不同的權重;按照上市公司指標在全部籃子股票中的排序,再使用上述步驟中獲得的權重對其進行加權加總計算。如果該公司的加權之和排名靠前,則表明該公司的基本面指標符合能夠帶來超額回報的歷史模式,從而有望在未來展現強勢。
數學模式大同小異,公司之間的競爭主要集中在兩個方面:第一,各公司均投入巨資,研制自己的特有指標;第二,研制更加有效、穩定的加總方式。
傳統的基本面分析往往要求基金公司雇傭大量分析師,成本高昂。由于每個分析師能夠跟蹤的公司數目有限,基金經理不得不在較小的股票籃子中進行選擇,有可能錯失最好的投資機會,投資組合的分散程度也受到限制。同時,依賴基本面分析進行投資管理要求基金經理進行大量的主觀判斷,人性弱點(貪婪與恐懼)對投資業績往往產生較大影響,投資業績波動較大。使用這種方法建構的投資組合往往無法定量化控制每只個股給投資組合帶來的風險。從基金公司的角度而言,這種方法對基金經理個人的依賴較大,一旦出現人員變化,基金業績也往往隨之波動。
量化選股方式將投資決策建立在對歷史模式的詳盡研究之上,克服了上述缺點。其在美國投資界的應用近20年來大幅提升,管理資產額的上升速度為傳統方式的4倍。
回歸價值投資
然而,過去數年,定量化基金遭遇了重大打擊。2007年,最大的定量化機構對沖基金、高盛名下的Global Alpha遭遇了重大損失,幾乎清盤。2008年,眾多量化基金再遭滑鐵盧。筆者在北美也曾主持研制一個包含上百個指標的量化選股系統,但在實踐中,卻最終放棄。
實戰經歷指出該類系統的一個致命弱點是,在實戰中,哪一類因子何時發揮作用,是不可預測的。有些時候是價值因子占優,有時候是增長因子占優,而何時其影響力出現變化,難以事先預測。其結果就是分析師與基金經理疲于奔命地試圖追趕因子影響力變化的腳步,并據此不斷矯正模型。如此,基金經理不得不在使用量化系統的同時,使用個人化的隨機判斷對量化系統進行糾正――這弱化了它本該享有的優勢并導致投資業績大幅波動。
仔細反思,最主要的問題在于,各預測因子被無機地組織在一起,各個因子之間的互相影響卻沒有被考慮。也就是說,華爾街模型“從數學到數學”,缺乏對投資哲學的深入理解。
量化技術所具有的優勢應該被利用,但數學手段應該被視為手段,而不是主導。一個有希望的發展方向,是將量化技術與價值投資哲學相結合,實現“從哲學到數學”式的投資理念。為此,需要在投資哲學上,梳理價值投資理念的本質。
價值投資在國內市場有眾多擁護者,也不乏懷疑者。實際上,國內普通投資者對價值投資的理解有值得深化之處。筆者以為,價值投資的本質有二:
第一,價值投資告訴投資者,市場會犯錯。以“5毛錢買進1元錢價值”作為號召,價值投資拒絕接受“有效市場理論”。但事實上,在大多數時候市場是有效的。大多數股票的價格正確反映了所有的信息、知識與預期,當時的價格就是上市公司的內在價值。要獲得超額回報,必須去尋找市場可能呈現的“異常”,或者說在何處投資者的平均預期可能落空。價值投資就是尋找“未來”與“預期”之間的歧異。量化系統的設計目標是,要有能力淘汰那95%的普通(有效)情況,而把注意力引導剩余的5%――在那里,“未來”與“預期”有最大的機會出現歧異。
第二,價值投資的另一面,是說任何人都會犯錯。當我們集中注意力去尋找“超級股票”的時候,是在下一個極大的賭注。這個賭注是高風險的。所以,請記住索羅斯的告誡:“投資者重要的不是做對還是做錯,而是在做對的時候賺多少,做錯的時候虧多少。”為對沖第一個賭注的風險,需要尋找最大的安全邊際――當我們犯錯的時,安全邊際將保護我們不致尸骨無存。
安全邊際是指,市場漲跌的輪回已經測試過所有情景。該公司在完整的牛熊市周期中,由千千萬萬投資者的真金實銀所測試出來的估值空間。因此,安全邊際的定義并非相對市場平均水平更低的PE值這么簡單。每家公司都不同于別的公司,將不同公司的估值水平相比較,更多時候帶來誤導而不是洞察力。應該將公司目前估值水平與該公司調整后的歷史范圍相比較,并決定“安全邊際”存在與否。
在實踐中,要尋找在未來可能提供業績驚喜、而仍在其估值范圍下限附近交易的公司。依據此思想,數量化技術可以對所有上市公司的投資機會予以量化評估,進而實現“從哲學到數學”的投資思路。
對中國股市獨特性的夸大導致某些論者以為,在中國股市,唯有投機可以贏得超額利潤。這其實是偽命題。事實上,正是由于中國股市效率較低且風險奇高,一個系統化評估市場錯配與風險衡量的系統,可以發揮最大效率。一切都取決于對市場運行規律的深入把握與技術優勢的結合。在實踐中,我們開發的量化價值投資體系取得了穩定超越指數的優良業績。這有力地證明,中國股市的特殊性并沒有遮蓋其作為投資市場的普遍性。
不過,雖然國內量化基金業績不俗,這兩年來規模也有顯著提升,但是與國外市場量化基金在共同基金總資產中占比16%相比,國內量化基金還有非常大的發展空間。而伴隨著中國市場有效性的逐步增強,量化基金未來的業績也有很大想象空間。
此前國內量化基金產品數量多達12只,但是大多以大中盤股票作為投資標的,而申萬菱信量化小盤基金則是一只專注于小盤股投資的量化策略基金。將投資目光鎖定小盤股,主要是看中小盤股長期優秀的業績以及高成長性。1996年到2001年的A股長牛市中,小盤股大幅超越市場;2009年之前,小盤股整體走勢與大中盤股接近;從2009年中開始,小盤股走勢大幅超越大盤股;到了2010年,雖然A股市場整體表現不佳,但許多小盤股漲幅卻仍然翻番。
主板基本面展望:上半年穩健
雖然2013年全年,自上而下的市場分析方法面臨了嚴峻的考驗,如2012年四季度經濟回升力度超出市場普遍預期,經濟拐點提前到來,但在市場一片樂觀呼聲中卻僅持續了一個季度,2013年上半年經濟迅速轉弱。下半年,在經歷了6月資金面“壓力測試”后,諸多宏觀經濟預判都對此后的經濟走勢極為悲觀,但實際情況卻再次偏離市場一致預期,7.8%的三季度GDP相對于二季度大幅回升0.3個百分點。
我們的宏觀經濟量化預測結果顯示,2013年四季度GDP在7.6%附近,且2014年一季度也保持同樣增速水平。雖然2013年市場風格差異極大,代表傳統經濟的主板指數在“三中全會經濟結構調整”、“利率市場化改革”、“地方債務平臺整治”、“美國逐漸退出國債購買計劃”、“環境保護和大氣治理”等負面信息的壓制下表現欠佳,但至少到2014年一季度經濟沒有大幅下行風險。
定性分析下,我們也認為目前處在政策敏感期,在三中全會《決議》對各改革方向提出指導性意見后,具體細則落實情況成為影響未來一年政策整體松緊的關鍵因素,例如市場比較關心的“優先股推進時點及方式”、“自貿區資本項放開程度和時點”、“注冊制IPO的推進和方式”、“房產稅收制度的推進和落實”、“利率市場化后銀行的業務范圍變化”、“資產證券化和地方融資債務的處置”等問題,其中每一個都有可能在公布和落實中成為市場進一步走強的重要催化劑。
作為量化研究,我們希望在細分數據上得到更多的邏輯驗證。圖中羅列了我們較為關心的中國經濟四大周期行業數據,分別是電力、鋼鐵、水泥、煤炭。在投資導向型經濟體中,上述指標走勢基本能夠反映經濟整體走向,圖中框選部分為2013年2-6月,可清晰看出一段顯著下行趨勢,這也是眾多宏觀經濟分析的錯判區間,在庫存周期波動干擾下,始于2012年末的經濟反彈提前終結!但從量化維度上,我們卻早在3月上旬便敏銳發現了其中的變化,這得益于眾多周期行業模型的跟蹤結果。
基于我們量化基本面預測體系的最新數據,各行業產量增速走向存在一定差異。如發電量增速未來3個月內將小幅下行,預計高點在10-11月形成;鋼鐵行業未來三個月基本面走勢或也將趨于謹慎,預計產量增速也將出現下行;水泥行業謹慎樂觀,預計原有產量、價格增速的上行趨勢仍將延續,但提升幅度有限;煤炭行業相對樂觀,預計2013年6月后的基本面回暖趨勢有望至少延續至2014年一季度,包括產量和價格的同比增速繼續改善。
綜合以上四行業走向,兩降兩升的預判若完全兌現,基本預示著宏觀經濟整體的平穩過渡。考慮到當前市場估值中蘊含了對中國經濟最悲觀的預期,因此我們判斷2014年上半年市場整體將延續估值修復特征,整體重心繼續上移,對應上證綜指參考波動區間為2100-2500點。
創業板基本面展望:或現短期指數調險
我們過去的研究結果表明,滬深300、中小板、創業板等市場板塊的業績同價格指數走勢存在顯著的對應關系,兩者高低點之間領先滯后關系穩定。
上述研究的重要意義在于,其反映出市場對于業績的高度敏感性,也進一步明確了基本面研究和預測工作的重要性。尤其是創業板上的業績與股價對應關系也沒有出現例外,這說明在故事和題材之外,在進行3個月以內的中短期投資中,業績波動仍舊是必須關注的重點因素之一。從創業板業績與股價對應關系可以看出,2011年一季度、2012年四季度兩次出現業績、股價下滑的雙重拐點,2013年全年創業板則基本呈現兩個序列同步提升狀態,我們需要關心的是下一個拐點出現的位置。
業績預測模型給出了令人擔憂的結果,雖然2013年四季度仍能看到業績的進一步提升,但2014年一季度將有可能看到較為顯著的增速下降情況即“業績低于預期”。
考慮到2013年四季度和2014年一季度的業績預測結果以及當前1200點以上的指數點位,我們對2014年上半年的創業板行情從6月中報時的樂觀轉為謹慎,預計創業板綜指波動中樞將下降到1100點附近,參考波動區間1000-1300點,超預期上行風險可能在2014年5-6月之后。
中長期角度下,我們對改革紅利釋放對于國內中小企業的正面影響也充滿信心,但中短期市場則難免受到消息和業績披露的影響,2014年一季度可能出現的業績減速將大概率上對指數產生負面影響,屆時市場的預期也將逐漸回復到一個更理性的水平上。
量化情緒面維度下的中短期市場狀態分析
量化資產配置情緒面,主板折溢價創歷史低位,否極泰來。雖然市場2013年7月便開始觸底回升,但我們監控的主板折溢價指數依舊處于歷史最低水平,反映市場情緒極度謹慎,預計2014年的情緒修復將帶來估值提升;持續跟蹤的市場“恐慌貪婪”指標目前指向大眾投資者的“羊群效應”短期內還不足以獨立引導市場走勢,建議更多關注市場基本面和政策面變化影響;最后,目前機構對創業板的相對持倉水平已從上半年的單邊增持轉變為高位震蕩,預示創業板/主板輪動關系已進入平穩期,需警惕未來業績不達預期風險下的機構減持可能對板塊帶來的負面沖擊。
近幾年,國內基金公司都在積極推出量化投資產品。但市場人士認為,目前國內的常見“量化”基金,實質上大多是“量化選股”基金,從量化的風險控制到量化的交易,整個決策流程依然靠傳統的方法。
國內著名投行宏觀策略研究員的工作積累,華爾街量化投資的歷練,使華商大盤量化擬任基金經理費鵬對量化投資的A股應用有著自己的心得。他認為,量化投資最大的優勢在風險控制上。與傳統的價值投資“越跌越買”的理念不同,他認為量化投資應該是主動對市場風險進行判斷,通過技術分析、量化模型分析等判定風險,在確定風險之后,及時對倉位進行控制,及時止損。
費鵬認為,目前市場上的量化產品將研究的重點放在擇股和行業配置上,缺乏有效及時的風險響應體系,而從國外的經驗看,量化的一大特點就是對風險的預判。因此,華商基金量化投資團隊在吸收國內外先進經驗的同時,在模型設計之初,便將核心定為風險控制。
在設計中,華商基金量化投資團隊借助了包括從統計信息學角度出發的信息熵值(Entropy)的變化、從分形理論出發的市場模式(P atter n)的變化、從金融物理學角度出發的金融泡沫統計指標的變化、從市場微觀結構出發的分析師一致預期分歧的變化和趨勢等,構建風險模型,對中短期系統風險進行定量分析,依靠基金經理和研究員對宏觀經濟發展狀況、人口與社會的結構性特征、經濟產業周期等因素的分析,對長期風險進行定性分析。
量化投資堅持追求絕對收益
提及量化投資,人們就會想到西蒙斯用公式打敗市場的經典案例。但這一投資工具在被引入國內投資市場之后,并沒有展現其神奇的威力。根據wi n d數據分類顯示,目前市場上有19只量化基金,2 012年可統計的15只量化基金平均收益率僅為2 . 5 5%(同期滬指上漲3 .17%),國內發行的量化基金的表現不盡如人意。
在費鵬看來,國內的量化基金僅僅是“量化選股”,追求相對收益。他認為,量化投資的核心應該是風控,堅持追求的則應該是絕對收益。
相比而言,目前國內公募量化基金多采用多因子模型,而多因子模型的設計原理是把價值投資理論通過數字模型加以表達。在實際測算中,華商基金量化團隊每日漲幅居前的股票中,會有所謂投資價值較少的“垃圾股”,很難通過價值投資理論解釋。
他分析目前市場上的量化產品將研究的重點放在擇股和行業配置上,實質上大多是“量化選股”基金,缺乏有效及時的風險響應體系,而從國外的經驗看量化的一大特點就是對風險的預判。費鵬介紹,華商基金量化投資團隊在設計該基金投資模型時就將風險量化模型作為重中之重。在設計中他們借助了包括統計信息學角度出發的信息熵值(Entropy)的變化、分形理論出發的市場模式(Pattern)的變化、金融物理學角度出發的金融泡沫統計指標的變化、市場微觀結構出發的分析師一致預期分歧的變化和趨勢等構建風險模型,對中短期系統風險進行定量分析。依靠基金經理和研究員對宏觀經濟發展狀況、人口與社會的結構性特征、經濟產業周期等因素的分析對長期風險進行定性分析。
在產品結構設計上,華商大盤量化基金獨具特色,其一,倉位比較靈活,股票投資比例可為0—95%,也就是說當市場趨勢性下跌時,可以空倉應對;其二,產品結構多樣性,雖然目前公募基金已開展了股指期貨,但基本上作為流動性管理的手段,而該基金將把股指期貨作為一個有效的風控或者對沖工具應用到投資中;其三,在投資標的上,華商大盤量化主要選擇流動性好的滬深300成分股,以保證在極端情況下可以及時調倉;其四,經過測算,在目前A股市場中利于量化操作規模在10億左右,因此一旦華商大盤量化基金募集額達到10億時便會停止。
而據記者了解,華商大盤量化基金在擇股方面也有別于一些量化類基金。相較而言,目前國內公募量化基金多采用多因子模型,而多因子模型的設計原理是把價值投資理論通過數字模型加以表達。而在實際測算中,華商基金量化團隊每日漲幅居前的股票中會有所謂投資價值較少的“垃圾股”,很難通過價值投資理論解釋。對此華商大盤量化基金在設計選股模型時更多的是通過捕捉市場的異常波動,尋找股價波動的非基本面的因素。通過對數據挖掘,建立初選股票池,然后按照行業分類,結合基本面研究,通過行業研究員調研,尋找相互印證支持依據,最終進行擇時投資。
從目前市場趨勢看,越來越多的基金公司傾向于推出量化策略。相對于海外成熟市場,A股市場不是特別有效的市場,量化投資策略可以發揮其紀律性、系統性、及時性、準確性、分散化的有點而捕獲國內市場的各種投資機會。同時A股市場的深度和廣度都與前幾年不可同日而語,市場上有兩千多家上市公司,基金經理加研究員再加賣方,能把握和持續跟蹤的公司也不過幾百家。量化投資多層次,多角度,海量數據觀察,可以捕捉更多的投資機會,拓展更大的投資空間。
巧理壓歲錢
ETF聯接基金生財有道
新春又至,在成人感嘆春節成“春劫”時,孩子們的壓歲錢水漲船高,越來越多的小朋友在春節長假后晉升為“小財神”。這筆賀歲紅包若巧妙打理,則有望成為個人的夢想基金。在理財人士看來,作為兒童成長的見證,讓壓歲錢生錢也需要尋覓具有成長基因的理財產品。
摘要:隨著滬港通的正式實施,中國股市交易量不斷創歷史新高.同時在世界石油價格持續降低的情況下,投資策略顯得十分重要.本文重點分析策略指數投資在股市投資中的運用.
關鍵詞 :投資組合;股市;策略指數投資
中圖分類號:F830.59文獻標識碼:A文章編號:1673-260X(2015)05-0068-03
1 策略指數投資介紹
2014年末隨著股市行情的走強,指數化產品迅速擺脫前幾年凈贖回的頹勢,呈現爆發式快速增長.伴隨著規模的迅速擴張,結構上也出現了一些變化.其中策略指數產品尤其引人關注.廣發中證百發100指數基金在開放募集后2天即超過20億元,顯示市場對特定方式策略指數投資的熱情追捧.策略指數投資,在國外又稱為Smart Beta,即“聰明”的Beta,是相對于“傳統”的Beta策略而存在的一種投資理念.傳統認知上的Beta是指一種全市場投資組合的系統性風險,在CAPM中以全市場所有股票的市值加權方式計算(market capitalization weighted).比如標普500指數、日經指數、以及在國內最具代表性的滬深300指數.通過簡單的推演,就可以論證市值加權并非是最優的方法.市場對股票的定價并非完全有效,那么市值加權的方式傾向于給高估的股票以更高的權重,而低估的股票以更低的權重,顯然這種方式并非是最優的.在這一點上,Hsu(2006)已經給出嚴格的論證.事實上,市值加權更加注重的是投資機會的市場容量(capacity),因此該類指數更多地被用作投資的業績基準.那么,如果將投資組合更換成一種非市值加權的方式,其得到的beta就是smart beta,相關的投資策略就稱為策略指數投資.這種smart beta指數中的股票權重往往是通過特定的量化算法獲得,看起來投資效果會比傳統的市值加權beta更加實用,相關的投資策略也往往會選擇市值加權指數作為投資業績的基準.
常見的Smart Beta策略包括價值策略、低波動策略、分散化策略、動量策略等.其中價值策略是以一些股票的價值指標為加權方式,目標是選擇一些基本面滿足特定屬性的股票構成組合.比如基于財務基本面評分的基本面加權,或基于分紅率的紅利加權等.低波動策略的目標是構建一個最低或較低波動率的投資組合,通常包括最小方差目標加權、波動率倒數加權等方法.分散化策略的目的是提高組合中股票的分散度,應用最廣的是等權重策略.動量策略在國外也是一種常見的策略,因為國外市場上驗證發現動量因子非常有效,因此會選擇以動量因子來作為股票選擇和加權的方式,見表1.
據統計,美國近三年新發行的Smart Beta策略投資產品規模約在600億美元,大致與市值加權的指數產品規模相當,策略也主要以紅利、等權重、基本面、低波動為主.而國內近年來策略指數投資產品發展也非常迅速.中證指數公司針對主要的Smart Beta策略進行了驗證,證明Smart Beta策略確實能大概率上擊敗以市值加權的滬深300指數.其中表現最好的是低波動相關策略,包括300最小方差、300低貝塔、300低波動.
2 資產配置下的策略指數投資
根據經典的CAPM模型我們知道,股票資產的收益率取決于其承擔的市場風險大小Beta,而無法被解釋的部分則為Alpha.但隨后的諸多研究發現,各種股票之間的Alpha具有異常的高相關性特征,或許存在市場因子以外的其他因素在影響股票資產的收益率.隨后發展的Fama-French三因素模型提出在市場因子以外,價值因子和規模因子也是非常顯著的.后來又將動量因子補充進來,從而形成四因素模型.
自此,風格因子投資的概念逐漸被學術界與投資界所廣泛接受.事實上,自從1970年代以來,國外就開始萌生基于這種理念的主動投資管理.投資業界在三因素模型基礎上開發了非常有效的線性因子投資模型,如Barra公司將國家地域因子、宏觀因子、概念風險因子等逐步納入到其風險評估模型中.隨后,學術界又逐步發現了更多有效的風險和策略因子,如低波動率、低流動性、基本面因子等.人們也逐漸發現,原來投資界以往的諸多策略產品實際上并非是提供了有效的Alpha,而只不過是將各種風格因子的beta巧妙包裝成投資能力的Alpha來推銷給投資者.
在這樣的視角上,資產配置投資就自然而然地成為投資方法的主流.我們對資產的看法不再是其表面上所呈現出來的風險與收益特征,而是其特定或持續暴露的風險因子敞口,比如價值因子敞口、規模因子敞口等.如果投資者能夠設定自己的風險預算,明確其將在各種風險因子上的敞口,就可以從市場上選擇合適的股票、策略指數產品,經過合理的搭配而形成組合.這樣的投資組合在風險上是可控的,從而將投資引入了一個新的配置時代.
因此,基于特定量化策略的Smart Beta策略指數投資開始風靡.這些指數投資產品不僅能夠提供超越傳統Beta的收益表現,更重要的是它們滿足了投資者的資產配置需求.這些產品的透明性好、費用低廉,并且突出地暴露到某一個特定的風險因子上.比如在紅利策略中,通常會選擇那些分紅率最高的股票進入組合,并給予高分紅股票更高的權重,這樣就使得組合在價值因子上產生了顯著的風險敞口.在等權策略中,全部入選組合的股票無論市值大小都給予相同權重,從而導致小盤股獲得比市值加權指數更高的權重,導致組合在規模因子上產生顯著的風險敞口.波動率倒數加權策略則會給予波動率較低的股票更高的權重,從而整體上降低組合的波動性風險,因此也在波動率因子上產生顯著的敞口.投資者在把握這些策略指數產品的風險特征后,就能夠方便地構建自己的組合配置,反過來也促進了策略指數投資的快速興起.
然而,Smart Beta策略指數產品也并非完全的“聰明”.在某一段時間內,也許特定的策略指數能戰勝市值加權組合,使得它看起來非常“聰明”,但在另一段時間內該策略指數可能會落后市值加權組合,使得它看起來也不是那么“聰明”.這是因為策略指數產品通常會有嚴重的風險因子敞口,因此其業績也隨著風險因子的表現而起伏不定.可能有一些因子長期來看存在明顯的超額收益,導致這些策略看起來非常具有吸引力.
針對幾個主要的風險因子,測算了2006-2014年間的表現.表3中我們發現小盤因子是中國A股市場上長期表現最好的,但其波動率也比較大.價值因子、反轉因子、基本面因子的長期表現也非常好.然而,表4測算了這些因子表現的相關性,發現各種因子之間的相關性非常低.并且單一因子的信息比率都無法達到2以上,這就表明單純使用一個因子,即使是表現最好的小盤因子也依然無法達到滿意的投資效果.
因此,風格偏向非常明顯的策略指數投資產品也即往往會隨著市場風格的切換而發生特別明顯的波動.但是,如果投資者能夠設定自己的風險預算約束,就能夠合理地選擇多個策略指數投資產品來構造自己的組合基金.組合基金利用不同產品風險敞口的低相關性來降低組合的波動風險.
3 組合基金投資
組合基金是能充分利用策略指數投資產品的優勢,同時又充分控制和分散風險的一種很好的方法.目前國內興起的量化投資基金很多策略就是試圖去搭配不同的風險因子,希望在控制一定的風險暴露基礎上,追求更高的收益.然而我們發現,這些策略大多數仍然是存在明顯的風險暴露.
我們選擇2014年表現最好的三只公募基金:華泰柏瑞量化指數、大摩多因子、長信量化先鋒.可以發現,雖然這三只基金在2014年、2013年表現較好,但在2011年、2012年里普遍較弱.其主要原因是這些基金普遍在小盤因子上有很強的暴露,2013-2014年里小盤因子表現很強,但2011-2012年里價值因子表現更好.表6拆解了三只基金的全部持倉的自由流通市值分布,不難看出大摩多因子與長信量化先鋒在小盤股上偏向非常明顯,而華泰柏瑞量化指數向小盤的偏離較小.
我們選擇其中業績記錄較長的大摩多因子、長信量化先鋒,另外搭配兩只偏向價值的策略指數基金:華寶興業上證180價值ETF、銀河滬深300價值.以等權重在四個產品之間搭配,構造一個混合的組合基金投資產品(FOF).
經過計算,不難看出兩個偏向價值的基金產品在2011和2012年明顯好于兩只偏向小盤的量化產品,但在2013年和2014年里表現弱于量化產品.經過等權構造后,FOF組合在2011-2014年間均能取得正的超額收益,更重要的是其信息比率提升到了2.20,遠遠高于四只產品各自的信息比率,這說明經過搭配后,資產組合的收益風險表現得到了明顯的提升.
4 結論
策略指數投資的Smart Beta正逐漸成為市場上非常重要的一類產品,因其風格特征顯著,在特定的市場環境下提供“聰明”的Beta收益而逐漸受到投資者的熱捧.然而,單一投資策略指數產品并不能提供穩健的收益,可以考慮在資產配置的目標下合理搭配策略指數投資產品,獲取更加穩健的收益.
參考文獻:
〔1〕鄭鳴,李思哲.我國基金風格投資的積極風險補償研究[J].廈門大學學報(哲學社會科學版),2010(02).
(一)資產定價與收益的預測
根據組合優化理論,投資者將持有無風險組合與市場風險資產組合,獲得無風險利率與市場風險溢價。資本資產定價模型則將此應用到單一證券或組合,認為證券的風險溢價等于無風險利率加上與風險貢獻比率一致的風險溢價,超過的部分就是超額收益,即投資組合管理所追求的阿爾法值[4]。追求顯著正的阿爾法是資產定價理論給實務投資的一大貢獻。基于因素模型的套利定價理論則從共同風險因素的角度提供了追求阿爾法的新思路。其中,法瑪和佛倫齊的三因素定價模型為這一類量化投資提供了統一的參考。可以說,在因素定價方面,量化投資繼承了資產定價理論的基本思想。對于因素定價中因素的選擇,證券投資學認為,對資產價格的影響,長期應主要關注基本面因素,而短期應主要關注市場的交易行為,即采用技術分析。在量化投資中,主要強調按照事先設定的規則進行投資,這在一定程度上與技術分析類似。但是,在技術分析中,不同的人會有不同的結論,而量化投資則強調投資的規則化和固定化,不會因人的差異而有較大的不同。另外,量化交易更強調從統計和數學模型方面尋找資產的錯誤定價或者進行收益的預測。
(二)無套利條件與交易成本
在證券投資學里,流動性是證券的生命力。組合投資理論、資本資產定價模型以及套利定價理論等都認為市場中存在大量可交易的證券,投資者可以自由買賣證券。這主要是為了保證各種交易都能實現,如套利交易。根據套利定價理論,一旦市場出現無風險的套利機會,理性投資者會立即進行套利交易,當市場均衡時就不存在套利機會。現實市場中往往存在套利限制。一是因為凱恩斯說的“市場的非理性維持的時間可能會長到你失去償付能力”。二是因為市場總是存在交易費用等成本。但證券投資學中,對市場中套利限制與非流動性的關注較少,這是因為傳統金融理論中簡化了市場結構。市場微觀結構理論研究在既定的交易規則下,金融資產交易的過程及其結果,旨在揭示金融資產交易價格形成的過程及其原因。在市場微觀結構理論中,不同的市場微觀結構對市場流動性的沖擊是不同的。因而,從量化投資的角度看,為了降低交易帶來的價格沖擊,能實施量化投資策略的證券往往都應有較好的流動性,因為交易時非流動性直接影響投資策略的實施。從這個意義上講,量化投資時的交易成本不僅包括交易費用,更主要的是要考慮市場交易沖擊的流動性成本。
(三)風險控制與市場情緒
在證券市場中,高收益與高風險相匹配。量化投資在追求高收益的同時,不可避免地承擔了一定的風險。在證券投資學中,系統性風險主要源于宏觀經濟因素,非系統性因素則主要源于行業、公司因素,并且不考慮市場交易行為的影響。在量化投資中,較多地使用因素定價模型,不僅會考慮市場經濟因素,而且會考慮交易行為等因素,只是不同的模型有不同的側重點,在多模型的量化投資系統中自然包括了這兩方面的因素。除了各種基本面和市場交易的因素風險外,量化投資還有自身不可忽視的風險源。一方面,量化交易中,部分交易是采用保證交易的期貨、期權等衍生品交易,這種杠桿交易具有放大作用,隱藏著巨大的風險。另一方面,市場沖擊的流動性成本也是量化投資的風險控制因素,理所當然地在圖1的風險控制模型中體現出來。另外,在一般的投資過程中,市場情緒或多或少會成為風險控制的一個對象。然而,在量化投資中,更多的交易都是通過計算機來實現的,如程序交易等,這樣以來,投資者情緒等因素對投資決策的影響相對較小。所以,在量化投資的風險控制模型中較少地考慮市場情緒以及投資者自身的情緒,主要是通過承擔適度的風險來獲得超額回報,因為畢竟減少風險也減少了超額回報。
(四)執行高頻交易與算法交易
在對未來收益、風險和成本的綜合權衡下,實現投資策略成為量化投資的重要執行步驟。為了達到投資目標,量化投資不斷追求更快的速度來執行投資策略,這就推動了采用高速計算機系統的程序化交易的誕生。在證券投資學里,技術分析認為股價趨勢有長期、中期和短期趨勢,其中,長期和中期趨勢有參考作用,短期趨勢的意義不大。然而,隨著計算機信息科技的創新,量化投資策略之間的競爭越來越大,誰能運作更快的量化模型,誰就能最先找到并利用市場錯誤定價的瞬間,從而賺取高額利潤。于是,就誕生了高頻交易:利用計算機系統處理數據和進行量化分析,快速做出交易決策,并且隔夜持倉。高頻交易的基本特點有:處理分筆交易數據、高資金周轉率、日內開平倉和算法交易。[5]高頻交易有4類流行的策略:自動提供流動性、市場微觀結構交易、事件交易和偏差套利。成功實施高頻交易同時需要兩種算法:產生高頻交易信號的算法和優化交易執行過程的算法。為了優化交易執行,目前“算法交易”比較流行。算法交易優化買賣指令的執行方式,決定在給定市場環境下如何處理交易指令:是主動的執行還是被動的執行,是一次易還是分割成小的交易單。算法交易一般不涉及投資組合的資產配置和證券選擇問題。
二、對量化投資在證券投資教學中應用的思考
從上述分析可以知道,量化投資的“黑箱”構造與證券投資學之間存在一定的差異,因此,在證券投資的教學中應當考慮量化投資發展的要求。
(一)市場微觀結構與流動性沖擊
在理性預期和市場有效假說下,市場價格會在相關信息披露后立即調整,在信息披露前后市場有著截然不同的表現。在證券投資學里,一般認為價格的調整是及時準確的,然而,現實的世界里,價格調整需要一個過程。在不同的頻率下,這種價格形成過程的作用是不同的。在長期的投資中,短期的價格調整是瞬間的,影響不大。然而,在高頻交易中,這種價格調整過程影響很大。市場微觀結構就是研究這種價格形成過程。市場微觀結構理論中有兩種基本的模型:存貨模型和信息模型。存貨模型關注商委托單簿不平衡對訂單流的影響,解釋沒有消息公布時價格短暫波動的原因。信息模型關注信息公布后信息反映到價格中的這一過程,認為含有信息的訂單流是導致價格波動的原因。無論是關注委托訂單的存貨模型還是關注市場參與者信息類型的信息模型,這些市場微觀結構的研究加強了流動性與資產價格之間的聯系,強調流動性在量化投資決策中的重要作用。一般的證券投資學中基本沒有市場微觀結構的內容,因而,為了加強證券投資學的實用性,應關注市場微觀結構的內容與發展。
(二)業績評價與高杠桿
對于證券組合而言,不僅要分析其超額收益和成本,還要考慮其風險與業績。在組合業績評價中,一方面要考慮風險的衡量,另一方面則要分析業績的來源。在證券投資學中,組合業績來自于市場表現以及管理者的配置與選股能力。對于量化投資而言,市場時機和管理者的能力依然重要,然而,量化投資的業績評價還應考慮另一個因素:高杠桿。量化交易中,部分交易是采用保證交易的期貨、期權等衍生品交易,這種杠桿交易具有放大作用,在市場好的時候擴大收益,但在市場不好的時候會加速虧損,這些與傳統的業績評價就不太一樣。在一般的證券投資學里,業績評價主要考慮經風險調整的收益,很少考慮其杠桿的作用,這不僅忽略了杠桿的貢獻,而且有可能夸大了投資者的技能水平。
(三)人為因素與模型風險
在量化投資中,非常注重計算機對數據和模型的分析,這突出了量化投資的規則性和固定性。然而,實際中,別看量化采用了各種數學、統計模型,但策略設計、策略檢測和策略更新等過程都離不開人的決策。量化交易策略與判斷型交易策略的主要差別在于策略如何生成以及如何實施。量化投資運用模型對策略進行了細致研究,并借助計算機實施策略,能夠消除很多認為的隨意性。但是,量化策略畢竟體現投資者的交易理念,這一部分依賴于投資者的經驗,一部分依賴于投資者對市場的不斷觀察與更新。實際上,人始終處于交易之中,對于市場拐點以及趨勢反轉的判斷主要還是依賴投資者的經驗。光大的烏龍指事件充分表明了人為因素在量化投資中的兩面性:決策實施依賴于人的設定,而人的設定不僅依賴于經驗,而且人還會犯錯。人之所以會犯錯,一方面是因為人們對市場的認知是不完全的,另一方面則是人們使用了錯誤的模型。經典的證券投資理論中,股票價格的變動被認為是隨機的,小概率事件出現的機會比較小,但是經驗研究表明股票收益率具有肥尾現象,小概率事件發生的機會超出了人們原先的認識,即市場還會出現“黑天鵝”。更為關鍵的是,量化投資更依賴數學和統計模型,這就使得量化投資存在較大的模型風險,即使用了錯誤的模型。為了防范模型風險,應采用更為穩健的模型,即模型的參數和函數應該適應多種市場環境。近年來,研究表明,證券收益及其與風險因素的關系存在較大的非線性,同時,市場中存在一定的“噪聲”,采用隱馬爾科夫鏈等隨機過程和機器學習等數據挖掘技術進行信息處理成為量化投資的重要技術支持。
2007年7月17日國內首只創新型封閉式分級基金面世,目前市場上共有7只分級基金,包括3只封閉式、3只指數及2010年3月發行的1只主動開放式,其中3只封閉式基金的近期收益見附表。縱觀這7只基金,既有封閉式基金也有開放式基金,設計方式類似,都有滿足相對保守投資者設計的低風險份額和相對激進投資者設計的高風險份額。另外,又有一條主線將它們區分開來,即收益分配方式。從國內分級產品的特色來看,其核心主要是針對基金份額進行收益風險的重新設計,將基金份額分成具有明顯風險收益屬性的不同級別,從而滿足不同投資者的需求,單從設計層面上講具有一箭雙雕之功用。目前分級基金正如火如荼,某種程度上也說明適應了市場的投資需求。
某種程度上,杠桿效應可能是吸引投資者關注分級基金的一大因素。簡單來講,杠桿效應相當于高風險份額向低風險份額借入資金,將兩份額資產混合起來投資,以期獲得超額收益,同時允諾低風險份額某一基準收益率。需要警惕的是,高風險份額在放大了投資收益的同時也提高了風險。最后的結果是高風險份額可能獲得超額收益,也可能損失翻倍。簡單來說,高風險份額向低風險份額借入資金的成本為2%,如果基金的收益率為5%,高風險份額相當于獲得了額外的3%的收益,相反如果基金的收益率為-1%,高風險份額除了要承受基金的損失還需要支付2%的融資成本。
在關注分級基金特色的同時,也應關注基金的投資目標和策略等。分級基金首先是基金,其次才是其創新性。分級基金的杠桿效應是在基金收益的基礎上面做設計,少了基金本身獲取收益的能力,分級基金的杠桿效應也如空中樓閣,有時會起到相反的效果。
量化基金:挑戰傳統的基本面分析
量化基金,簡單理解就是依據數量化的技術進行資產管理,有別于傳統的基本面分析,主要運用數學理論和復雜的統計手段構建投資策略。自1971年富國銀行發行跟蹤紐約證券交易所1500只股票的指基以來,數量化技術便逐漸被人們認識,量化基金應運而生。海外量化基金的優異表現曾經一度引起了許多人的關注,這種設計思路也逐步被引入國內基金產品設計中。
量化基金有別于普通基金的運作模式,普通基金依靠基金經理做決策該買賣哪些股票,在什么時候交易,量化基金最明顯的優勢在于計算機模型的處理效率遠高于人腦,在海量股票選擇中占有絕對優勢。量化基金的研究成本比主動管理型基金要低得多,成千上萬只股票如果單靠分析師去研究并挑選,研究成本會很高。而量化基金主要依靠計算機模型來做決策,相對而言,研究成本會降低。多數量化基金的模型會按照基準指數的投資組合去挑選具體的行業和股票。這個流程會降低主動管理型基金經理憑主觀推斷和情緒化去選擇某一行業或者某只股票的風險,這也是其優勢之一。
由于量化基金的這些優勢以及業績上的優異表現,此類產品在國外一度被很多投資者所津津樂道。據一份研究資料表明,1981~2000年,使用量化技術的增強型指數基金普遍戰勝了業績基準。然而近年來海外量化基金失效及黑箱子現象使所有人開始重新審視量化基金的有效性和未來(失效主要是指2007年8月以來量化基金的業績相比非量化基金普遍表現不佳;黑箱子是對某些量化基金操作方式的一種形象地描述,量化基金的模型和投資方法并不是公開的,基金經理就好像在一個黑箱子里面進行操作一樣)。模型結構的相似性將直接影響模型的有效性及流動性。模型最主要的功能是通過有效識別因素尋找被低估的股票。發展之初,可能證券間的相關性不是很強,模型對識別錯誤定價的證券是有效的,但隨著市場的發展,相關程度也不斷增加,有效性可能會減弱。從模型的具體操作來看,量化模型主要是根據歷史數據來構建,它吸收新信息的能力比較緩慢和遲鈍。一旦外部環境發生變化或發生某些重大事件,如基本面上的變化等,其有效性可能就會受影響。
指數型QDII:另辟蹊徑的QDII