時間:2023-03-20 16:06:50
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇繼電保護論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
1.2電源問題①逆變穩壓電源問題a紋波系數過高b輸出功率不足或穩定性差②直流熔絲的配置問題③帶直流電源操作插件
1.3TA飽和問題作為繼電保護測量TA對二次系統的運行起關鍵作用,隨著系統短路電流急劇增加,在中低壓系統中電流互感器的飽和問題日益突出,已影響到繼電保護裝置動作的正確性。現場因饋線保護因電流互感器飽和而拒動,主變后備保護越跳主變三側開關的事故時有發生。由于數字式繼電器采用微型計算機實現,其主要工作電源僅有5V左右,數據采集部分的有效電平范圍也僅有10V左右,因此能有效處理的信號范圍更小,電流互感器的飽和對數字式繼電器的影響將更大。①對輔助判據的影響②對基于工頻分量算法的影響③對不同的數據采集方法的影響④防止TA飽和的方法與對策。
1.4抗干擾問題運行經驗表明:微機保護的抗干擾性能較差,對講機和其他無線通訊設備在保護屏附近的使用會導致一些邏輯元件誤動作。現場曾發生過電焊機在進行氬弧焊接時,高頻信號感應到保護電纜上使微機保護誤跳閘的事故發生。新安裝、基建、技改都要嚴格執行有關反事故技術措施。盡可能避免操作干擾、沖擊負荷干擾、直流回路接地干擾等問題的發生。
1.5保護性能問題保護性能問題主要包括兩方面,即裝置的功能和特性缺陷。有些保護裝置在投入直流電源時出現誤動;高頻閉所保護存在頻拍現象時會誤動;有些微機保護的動態特性偏離靜態特性很遠也會導致動作結果的錯誤。在事故分析時應充分考慮到上述兩者性能之間的偏差。
1.6插件絕緣問題微機保護裝置的集成度高,布線緊密。長期運行后,由于靜電作用使插件的接線焊點周圍聚集大量靜電塵埃,在外界條件允許時,兩焊點之間形成了導電通道,從而引起裝置故障或者事故的發生。
1.7軟件版本問題由于裝置自身的質量或程序漏洞問題只有在現場運行過相當一段時間后才能發現。因此,繼電保護人員在保護調試、檢驗、故障分析中發現的不正常或不可靠現象應及時向上級或廠商反饋情況。
1.8高頻收發信機問題在220kV線路保護運行中,屬于收發信機問題仍然是造成縱聯保護不正確動作的主要因素,主要問題是元器件損壞、抗干擾性能差等,出問題的收發信機基本上都包括了目前各制造廠生產的收發信機。因此,收發信機的生產質量一定要重視起來。應注意校核繼電保護通信設備(光纖、微波、載波)傳輸信號的可靠性和冗余度,防止因通信設備的問題而引起保護不正確動作。另外,高頻保護的收發信機的不正常工作,也是高頻保護不正確動作的原因之一。如:收發信機元件損壞,收發信機起動發信信號產生缺口,高頻通道受強干擾誤發信,收發信機故障,收發信機內連線錯誤,忘投收發信機電源,收發信機不能起到閉鎖作用,區外故障時誤動等。
2繼電保護事故處理的思路
2.1正確充分利用微機提供的故障信息對經常發生的簡單事故是容易排除的,但對少數故障僅憑經驗是難以解決的,應采取正確的方法和步驟進行。
2.1.1正確對待人為事故有些繼電保護事故發生后,按照現場的信號指示無法找到故障原因,或者斷路器跳閘后沒有信號指示,無法界定是人為事故或是設備事故,這種情況的發生往往與工作人員的重視程度不夠、措施不力、等原因造成。人為事故必須如實反映,以便分析和避免浪費時間。
2.1.2充分利用故障錄波和時間記錄微機事件記錄、故障錄波圖形、裝置燈光顯示信號是事故處理的重要依據,根據有用信息作出正確判斷是解決問題的關鍵。若通過一、二次系統的全面檢查發現一次系統故障使繼電保護正確動作,則不存在繼電保護事故處理的問題;若判斷故障出在繼電保護上,應盡量維持原狀,做好記錄,做出故障處理計劃后再開展工作,以避免原始狀況的破壞給事故處理帶來不必要的麻煩。
2.2運用正確的檢查方法
2.2.1逆序檢查法如果利用微機事件記錄和故障錄波不能在短時間內找到事故發生的根源時,應注意從事故發生的結果出發,一極一級往前查找,直到找到根源為止。這種方法常應用在保護出現誤動時。
2.2.2順序檢查法該方法是利用檢驗調試的手段來尋找故障的根源。按外部檢查、絕緣檢測、定值檢查、電源性能測試、保護性能檢查等順序進行。這種方法主要應用于微機保護出現拒動或者邏輯出現問題的事故處理中。
2.2.3運用整組試驗法此方法的主要目的是檢查保護裝置的動作邏輯、動作時間是否正常,往往可以用很短的時間再現故障,并判明問題的根源。如出現異常,再結合其他方法進行檢查。
2.3事故處理的注意事項
2.3.1對試驗電源的要求在進行微機保護試驗事要求使用單獨的供電電源,并核實用電試驗電源是否滿足三相為正序和對稱的電壓,并檢查其正弦波及中性線是否良好,電源容量是否足夠等要素。
2.3.2對儀器儀表的要求萬用表、電壓表、示波器等取電壓信號的儀器必須選用具有高輸入阻抗者。繼電保護測試儀、移相器、三相調壓器應注意其性能穩定。
3如何提高繼電保護技術
掌握和了解繼電保護故障和事故處理的基本類型和思路是提高繼電保護故障和事故處理水平的重要條件,同時要加強下述幾個問題。
3.1掌握足夠必要的理論知識
3.1.1電子技術知識由于電網中微機保護的使用越來越多,作為一名繼電保護工作者,學好電子技術及微機保護知識是當務之急。
3.1.2微機保護的原理和組成為了根據保護及自動裝置產生的現象分析故障或事故發生的原因,迅速確定故障部位,工作人員必須具備微機保護的基本知識,必須全面掌握和了解保護的基本原理和性能,熟記微機保護的邏輯框圖,熟悉電路原理和元件功能。
3.2具備相關技術資料要順利進行繼電保護事故處理,離不開諸如檢修規程、裝置使用與技術說明書、調試大綱和調試記錄、定值通知單、整組調試記錄,二次回路接線圖等資料。
3.3運用正確的檢查方法一般繼電保護事故往往經過簡單的檢查就能夠被查出,如果經過一些常規的檢查仍未發現故障元件,說明該故障較為隱蔽,應當引起充分重視,此時可采用逐級逆向檢查法,即從故障現象的暴露點入手去分析原因,由故障原因判別故障范圍。如果仍不能確定故障原因,就采用順序檢查法,對裝置進行全面的檢查。
3.4掌握微機保護事故處理技巧在微機保護的事故處理中,以往的經驗是非常寶貴的,它能幫助工作人員快速消除重復發生的故障,但技能更為重要,現針對微機保護的特點總結如下。
3.4.1替代法該方法是指用規格相同、功能相同、性能良好的插件或元件替代被懷疑而不便測量的插件或元件。
3.4.2對比法該方法是將故障裝置的各種參數或以前的檢驗報告進行比較,差別較大的部位就是故障點。
3.4.3模擬檢查法該方法是指在良好的裝置上根據原理圖(一般由廠家配合)對其部位進行脫焊、開路或改變相應元件參數,觀察裝置有無相同的故障現象出現,若有相同的故障現象出現,則故障部位或損壞的元件被確認。
4小結
隨著通信技術的發展,在縱聯保護通道的使用上,已經由原來的單一的載波通道變為現在的載波、微波、光纖等多種通道方式。由于光纖通道所具有的先天優勢,使它與繼電保護的結合,在電網中會得到越來越廣泛的應用。
1光纖通道作為縱聯保護通道的優勢
光纖通道首先在通信技術中得到廣泛的應用,它是基于用光導纖維作為傳輸介質的一種通信手段。光纖通道相對于其他傳統通道(如:電纜、微波等)具有如下特點:
1.1傳輸質量高,誤碼率低,一般在10-10以下。這種特點使得光纖通道很容易滿足繼電保護對通道所要求的"透明度"。即發端保護裝置發送的信息,經通道傳輸后到達收端,使收端保護裝置所看到的信息與發端原始發送信息完全一致,沒有增加或減少任何細節。
1.2光的頻率高,所以頻帶寬,傳輸的信息量大。這樣可以使線路兩端保護裝置盡可能多的交換信息,從而可以大大加強繼電保護動作的正確性和可靠性。
1.3抗干擾能力強。由于光信號的特點,可以有效的防止雷電、系統故障時產生的電磁方面的干擾,因此,光纖通道最適合應用于繼電保護通道。
以上光纖通道的三個特點,是繼電保護所采用的常規通道形式所無法比擬的。在通道選擇上應為首選。但是由于光纜的特點,抗外力破壞能力較差,當采用直埋或空中架設時,易于受到外力破壞,造成機械損傷。若采用OPGW,則可以有效的防止類似事件的發生。
2光纖通道與光纖保護裝置的配合方式
目前,縱聯保護采用光纖通道的方式,得到了越來越廣泛的應用,在現場運行設備中,主要有以下幾種方式:
2.1專用光纖保護:
光纖與縱聯保護(如:WXB-11C、LFP-901A)配合構成專用光纖縱聯保護。采用允許式,在光纖通道上傳輸允許信號和直跳信號。此種方式,需要專用光纖接口(如:FOX-40),使用單獨的專用光芯。優點是:避免了與其他裝置的聯系(包括通信專業的設備),減少了信號的傳輸環節,增加了使用的可靠性。缺點是:光芯利用率降低(與復用比較),保護人員維護通道設備沒有優勢。而且,在帶路操作時,需進行本路保護與帶路保護光芯的切換,操作不便,而且光接頭經多次的拔插,易造成損壞。
2.2復用光纖保護:
光纖與縱聯保護(如:7SL32、WXH-11、CSL101、WXH-11C保護)配合構成復用光纖縱聯保護。采用允許式,保護裝置發出的允許信號和直跳信號需要經音頻接口傳送給復用設備,然后經復用設備上光纖通道。優點是:接線簡單,利于運行維護。帶路進行電信號切換,利于實施。提高了光芯的利用率。缺點是:中間環節增加,而且帶路切換設備在通信室,不利于運行人員巡視檢查,通信設備有問題要影響保護裝置的運行。
2.3光纖縱聯電流差動保護:
光纖電流差動保護是在電流差動保護的基礎上演化而來的,基本保護原理也是基于克希霍夫基本電流定律,它能夠理想地使保護實現單元化,原理簡單,不受運行方式變化的影響,而且由于兩側的保護裝置沒有電聯系,提高了運行的可靠性。目前電流差動保護在電力系統的主變壓器、線路和母線上大量使用,其靈敏度高、動作簡單可靠快速、能適應電力系統震蕩、非全相運行等優點是其他保護形式所無法比擬的。光纖電流差動保護在繼承了電流差動保護的這些優點的同時,以其可靠穩定的光纖傳輸通道保證了傳送電流的幅值和相位正確可靠地傳送到對側。時間同步和誤碼校驗問題是光纖電流差動保護面臨的主要技術問題。在復用通道的光纖保護上,保護與復用裝置時間同步的問題對于光纖電流差動保護的正確運行起到關鍵的作用,因此目前光纖差動電流保護都采用主從方式,以保證時鐘的同步;由于目前光纖均采用64Kbit數字通道,電流差動保護通道中既要傳送電流的幅值,又要傳送時間同步信號,通道資源緊張,要求數據的誤碼校驗位不能過長,這樣就影響了誤碼校驗的精度。目前部分廠家推出的2Mbit數字接口的光纖電流差動保護能很好地解決誤碼校驗精度的問題。3光纖保護實際應用中存在的問題
3.1施工工藝問題
光纖保護是超高壓線路的主保護,通道的安全可靠對電力系統的安全、穩定運行起到重要的作用。由于光纜傳輸需要經過轉接端子箱、光纜機、電纜層和高壓線路等連接環節,并且光纖的施工工藝復雜、施工質量要求高,因此如果在保護裝置投入運行前的施工、測試中存在誤差,則會導致保護裝置的誤動作,進而影響全網的安全穩定運行。
3.2通道雙重化問題
光纖保護用于220kV及以上電網時,按照220kV及以上線路主保護雙重化原則的要求,縱聯保護的信號通道也要求雙重化,高頻保護由于是在不同的相別上耦合,因此能滿足雙通道的要求,如果使用2套光纖保護作為線路的主保護,通道雙重化的問題則一直限制著光纖保護的大規模推廣應用。
3.3光纖保護管理界面的劃分問題
隨著保護與通信銜接的日益緊密,繼電保護專業與通信專業管理界面日益難以區分,如不從制度上解決這一問題,將直接影響到光纖保護的可靠運行。對于獨立纖芯的保護,通信專業與繼電保護專業管理的分界點在通信機房的光纖配線架上。配線架以上包括保護裝置的那段尾纖,屬于繼電保護專業維護,這就要求繼電保護專業人員具備一定的光纖校驗維護技能。
3.4光纖保護在旁路代路上的問題
線路光纖保護在旁路代路時不方便操作,由于光纖活接頭不能隨便拔插,每次拔插都需要重新作衰耗測試,而且經常性拔插也容易造成活接頭的損壞,因此不宜使用拔插活接頭的辦法實現光纖通道的切換。對于電網中沒有單獨的旁路保護,旁路代路時是切換交流回路,因此不存在通道切換問題,但對電網有獨立的旁路保護,對于光纖閉鎖式、允許式縱聯保護暫時可以采用切換二次回路的方式,但對于光纖差動電流保護則無法代路,目前都是采取旁路保護單獨增設一套光纖差動保護的方法解決。已有部分廠家在謀求解決光纖保護切換問題的辦法,如使用光開關來實現光纖通道切換。
結束語
盡管目前光纖保護在長距離和超高壓輸電線路上的應用還有一定的局限性,在施工和管理應用上仍存在不足,但是從長遠看,隨著光纖網絡的逐步完善、施工工藝和保護產品技術的不斷提高,光纖保護將占據線路保護的主導地位。
①繼電保護自動化技術在母線保護中的應用。母線繼電保護主要包括兩種,即相位對比保護以及差動保護。相位對比保護指的是通過相位的對比方式,提高系統保護母線的可靠性和有效性;差動保護是將特點以及變化都一致的電流互感器設置在母線元件上,當系統母線側邊端子和二次繞組進行連接之后,再將繼電保護裝置安裝在系統母線差動位置。在大電流接地過程中,通過三相連接的方式實現;小電流接地過程中,在相間短路中設置系統母線保護,然后通過兩相連接的方式實現。②繼電保護自動化技術在發動機保護中的應用。發電機是電力系統的重要組成部分,保證發動機的安全、穩定運行至關重要。繼電保護自動化技術在發電機保護中應用主要包括兩個方面:一方面,重點保護,如果發電機定子繞組匝間發生短路故障,將會導致發電機的故障部位溫度上升,破壞絕緣層,威脅發電機的安全運行,通過在定子繞組內安裝匝間保護裝置,能夠有效的防止定子匝間短路故障的發生;如果發電機的單相接地產生的電流超過規定值,通過安裝接地保護裝置能夠對發電機進行繼電保護;通過將發電機中性點、電流、相位進行相互結合,能夠形成縱聯差動保護,實現對發電機的保護;另一方面,備用保護,過電壓保護能夠有效的防止發電機自負荷較低的狀況下發生絕緣被擊穿的現象;過電保護能夠有效的實現對外部短路故障的保護,防止發生短路破壞發電機;當發電機定子繞組發生低負荷問題時,繼電保護裝置能夠自動切斷電源,并發出相應的報警信號,實現對發電機的保護。③繼電保護自動化技術在變壓器保護中的應用。變壓器是電力系統的重要組成部分之一,對電力系統的運行安全性和穩定性具有非常重要的作用。繼電保護自動化技術在變壓器保護中的應用主要包括以下幾個方面:其一,短路保護,變壓器短路保護包括阻抗繼電保護和過電流繼電保護,阻抗繼電保護主要是通過利用變壓器阻抗元件產生的保護作用,阻抗元件運行一段時間之后,會自動切斷電源,以此實現對變壓器的保護;過電流繼電保護主要是在變壓器電源兩邊電源和時間元件中安裝過電流繼電保護裝置,電流元件運行一段時間之后,會自動切斷電源,進而實現對變壓器的保護。其二,瓦斯保護,當變壓器的油箱出現問題時,在故障電弧的作用下絕緣材料和油都會發生分解,產生有害氣體,通過采用瓦斯保護,當油箱出現上述故障時,能夠自動的啟動保護動作,將變壓器電源切斷,同時發出警報信號通知維護人員趕到故障地點進行處理。其三,接地保護,對于不接地變壓器保護,應該采取零序電壓保護措施;對于直接接地變壓器保護,應該采取零序電流保護。④繼電保護自動化技術在線路接地保護中的應用。電力系統的線路錯綜復雜,接地方式也相對較多,因此電力系統的接地方式包括大電流型接地與小電流型接地,當出現大電流接地時,應該立刻切斷電源,防止接地故障對電力系統造成的破壞;當發生小電流型接地時,繼電保護裝置會發出報警信號,電力系統在一定時間內依然可以運行。針對不同的接地故障,應該根據故障狀況采取相應的保護措施,具體狀況如下所示:其一,零序功率,當電力系統發生接地故障時,零序功率的方向發生變化,零序電流波動相對較小,以此實現對電力接地故障的預測以及保護;其二,零序電流,當電力系統線路發生接地故障時,零序電流會迅速上升,繼電保護動作非常敏感,能夠及時的采取切斷電源的保護措施,對電力系統進行保護;其三,零序電壓,電力系統在正常運行時,并不會產生零序電壓,如果電力系統發生接地故障,會導致零序電壓的產生,繼電保護裝置能夠及時的發出相應的報警信號,同時電網維護人員通過觀察電壓表數值能夠判斷系統是否發生接地故障,主要是因為當電力系統發生接地故障時,電壓數值會降低。
1.2實例分析
文章以某電網為例,該電網于2010年應用了繼電保護自動化技術,2011年4月23日,110kV變壓器主變低壓側繼電保護動作,1號主變101開關跳閘,2號主變119、131開關過流保護動作跳閘,重合閘動作,合成功,電網維護人員趕到事故現場,設備并無異常,維護人員通過查看跳閘過的線路,兩條線路故障都能夠合閘成功,但是卻導致越級跳閘。通過對故障進行分析,發現為線路故障,開關拒動,處理方法表現為:把故障開關隔離,恢復供電,然后通知檢修人員認真檢查,查實狀況后采取措施進行檢修。
2繼電保護自動化技術的未來發展趨勢
繼電保護自動化技術的未來發展趨勢主要包括以下幾個方面:其一,智能化,近年來,人工智能技術在電力系統繼電保護自動化中得到非常廣泛的應用,例如模糊邏輯算法、遺傳算法、神經網絡等,通過將這些人工智能技術應用在繼電保護自動化系統中,能夠保證繼電保護自動化系統正確判別故障,并具有智能化解決復雜問題的能力,進而實現繼電保護的智能化;其二,網絡化,計算機網絡技術在國家經濟建設以及能源發展中發揮了至關重要的作用,通過將網絡化技術應用在電力繼電保護系統中,利用計算機網絡能夠將主要設備的繼電保護裝置連接在一起,創建繼電保護裝置網絡,能夠顯著的提高繼電保護的可靠性,因此電力系統繼電保護技術的網絡化是未來發展的一種必然趨勢;其三,計算機化,隨著計算機技術的快速發展,自動化芯片控制的電路保護硬件已經從16位單CPU結構發展為32位CPU微機保護結構,顯著的提高了繼電保護的性能以及響應速度,繼電保護自動化系統的計算機化已經成為不可逆轉的發展趨勢。
對于專用光纖保護方式,雖然接線簡單,但在保護工作人員的維護上沒有優勢,而且反復進行尾纖的拔插極易造成設備損壞,重點在于該方式對于通信光纜的纖芯資源占用較大,通信光纜在承載各個傳輸網的光鏈路傳輸等業務后會出現沒有足夠的纖芯可以用于保護通道的情況。對于復用光纖保護方式,保護信息在傳輸的過程中需經歷幾次跳轉,MUX光電轉換設備、通信SDH傳輸設備的可靠性若出現問題,則對繼電保護也帶來了安全隱患。復用保護通道的中間節點不利于運行人員的巡檢工作。
2發展前景
對于現行的復用光纖保護通道方式,保護裝置發出的光信號轉換為電信號的過程由MUX裝置完成,MUX裝置需要單獨設立屏柜裝置并擺放于通信機房內。這樣的方式對于一個有很多出線的220kV及以上變電站并不利于通信設備的擺放及后期擴建,而且一列類的解碼編碼過程計較繁瑣。在現在的實際運行中,MUX轉換裝置是一種第三方協議轉換裝置,它沒有統一的接口標準,不能網管監控,并且故障頻發,給繼電保護帶來了安全隱患。于是新的發展模式出現,南網提出新型的2M光接口板用于通信SDH傳輸設備。2M光接口板的使用取代了原有的2M電接口板及MUX轉換裝置,2M光接口板像2M電接口一樣占用2-3個槽位置于SDH同步傳輸設備的核心子架內。當保護室的保護裝置發送出標稱速率為2Mb/s光信號后,通過兩根尾纖接至光配線單元,經由聯絡光纜可直接連接到SDH同步傳輸設備上的2M光接口板,此時2Mb/s的光信號可直接進行光電轉化,轉變為2Mb/s的電信號,該電信號的時鐘信息被提取,保證了兩端站點傳輸設備所傳輸信息的同步性,后續過程則與傳統模式一致。如下圖3所示:這樣的通道模式較傳統模式省去了MUX轉換裝置,節省了機房的空間,簡化了編解碼的過程,減少了設備間的反復跳線,也解決了MUX轉換裝置不能網管監控的問題,不會因為MUX裝置故障頻發而影響繼電保護業務。目前市場上了解到的新型2M光接口板加光接口模塊組合后費用在4萬元左右,原2M電接口板的費用為2萬元左右,費用相差近一倍。但是一個2M光接口板上的光接口數量一般可達8個,即每個2M光接口可傳輸8個2Mb/s的保護通道,對于一個220kV變電站而言,通信機房內至少需要8臺MUX轉換裝置,一臺MUX裝置的價格約2萬元左右,無論從經濟還是技術角度考慮,新型2M光接口都具有絕對的優勢。若2M光接口板在電網內廣泛使用而批量生產,相信2M光接口板的價格也將有所下降。
1.10KV供電系統在電力系統中的重要位置
電力系統是由發電、變電、輸電、配電和用電等五個環節組成的。在電力系統中,各種類型的、大量的電氣設備通過電氣線路緊密地聯結在一起。由于其覆蓋的地域極其遼闊、運行環境極其復雜以及各種人為因素的影響,電氣故障的發生是不可避免的。由于電力系統的特殊性,上述五個環節應是環環相扣、時時平衡、缺一不可,又幾乎是在同一時間內完成的。在電力系統中的任何一處發生事故,都有可能對電力系統的運行產生重大影響。例如,當系統中的某工礦企業的設備發生短路事故時,由于短路電流的熱效應和電動力效應,往往造成電氣設備或電氣線路的致命損壞還有可能嚴重到使系統的穩定運行遭到破壞;當10KV不接地系統中的某處發生一相接地時,就會造成接地相的電壓降低,其他兩相的電壓升高,常此運行就可能使系統中的絕緣遭受損壞,也有進一步發展為事故的可能。
10KV供電系統是電力系統的一部分。它能否安全、穩定、可靠地運行,不但直接關系到企業用電的暢通,而且涉及到電力系統能否正常的運行。因此要全面地理解和執行地區電業部門的有關標準和規程以及相應的國家標準和規范。
由于10KV系統中包含著一次系統和二次系統。又由于一次系統比較簡單、更為直觀,在考慮和設置上較為容易;而二次系統相對較為復雜,并且二次系統包括了大量的繼電保護裝置、自動裝置和二次回路。所謂繼電保護裝置就是在供電系統中用來對一次系統進行監視、測量、控制和保護,由繼電器來組成的一套專門的自動裝置。為了確保10KV供電系統的正常運行,必須正確的設置繼電保護裝置。
2.10KV系統中應配置的繼電保護
按照工廠企業10KV供電系統的設計規范要求,在10KV的供電線路、配電變壓器和分段母線上一般應設置以下保護裝置:
(1)10KV線路應配置的繼電保護
10KV線路一般均應裝設過電流保護。當過電流保護的時限不大于0.5s~0.7s,并沒有保護配合上的要求時,可不裝設電流速斷保護;自重要的變配電所引出的線路應裝設瞬時電流速斷保護。當瞬時電流速斷保護不能滿足選擇性動作時,應裝設略帶時限的電流速斷保護。
(2)10KV配電變壓器應配置的繼電保護
1)當配電變壓器容量小于400KVA時:一般采用高壓熔斷器保護;
2)當配電變壓器容量為400~630KVA,高壓側采用斷路器時,應裝設過電流保護,而當過流保護時限大于0.5s時,還應裝設電流速斷保護;對于車間內油浸式配電變壓器還應裝設氣體保護;
3)當配電變壓器容量為800KVA及以上時,應裝設過電流保護,而當過流保護時限大于0.5s時,還應裝設電流速斷保護;對于油浸式配電變壓器還應裝設氣體保護;另外尚應裝設溫度保護。
(3)10KV分段母線應配置的繼電保護
對于不并列運行的分段母線,應裝設電流速斷保護,但僅在斷路器合閘的瞬間投入,合閘后自動解除;另外應裝設過電流保護。如采用的是反時限過電流保護時,其瞬動部分應解除;對于負荷等級較低的配電所可不裝設保護。
3.10KV系統中繼電保護的配置現狀
目前,一般企業高壓供電系統中均為10KV系統。除早期建設的10KV系統中,較多采用的是直流操作的定時限過電流保護和瞬時電流速斷保護外,近些年來飛速建設的電網上一般均采用了環網或手車式高壓開關柜,繼電保護方式多為交流操作的反時限過電流保護裝置。很多重要企業為雙路10KV電源、高壓母線分段但不聯絡或雖能聯絡但不能自動投入。在系統供電的可靠性、故障響應的靈敏性、保護動作的選擇性、切除故障的快速性以及運行方式的靈活性、運行人員的熟練性上都存在著一些急待解決的問題。
二繼電保護的基本概念
1.10KV供電系統的幾種運行狀況
(1)供電系統的正常運行
這種狀況系指系統中各種設備或線路均在其額定狀態下進行工作;各種信號、指示和儀表均工作在允許范圍內的運行狀況;
(2)供電系統的故障
這種狀況系指某些設備或線路出現了危及其本身或系統的安全運行,并有可能使事態進一步擴大的運行狀況;
(3)供電系統的異常運行
這種狀況系指系統的正常運行遭到了破壞,但尚未構成故障時的運行狀況。
2.10KV供電系統繼電保護裝置的任務
(1)在供電系統中運行正常時,它應能完整地、安全地監視各種設備的運行狀況,為值班人員提供可靠的運行依據;
(2)如供電系統中發生故障時,它應能自動地、迅速地、有選擇性地切除故障部分,保證非故障部分繼續運行;
(3)當供電系統中出現異常運行工作狀況時,它應能及時地、準確地發出信號或警報,通知值班人員盡快做出處理;
不難看出,在10KV系統中裝設繼電保護裝置的主要作用是通過縮小事故范圍或預報事故的發生,來達到提高系統運行的可靠性,并最大限度地保證供電的安全和不間斷。
可以想象,在10KV系統中利用熔斷器去完成上述任務是不能滿足要求的。因為熔斷器的安秒特性不甚完善,熄滅高壓電路中強烈電弧的能力不足,甚至有使故障進一步擴大的可能;同時還延長了停電的歷時。只有采用繼電保護裝置才是最完美的措施。因此,在10KV系統中的繼電保護裝置就成了供電系統能否安全可靠運行的不可缺少的重要組成部分。
3.對繼電保護裝置的基本要求
對繼電保護裝置的基本要求有四點:即選擇性、靈敏性、速動性和可靠性
(1)選擇性
當供電系統中發生故障時,繼電保護裝置應能有選擇性地將故障部分切除。也就是它應該首先斷開距離故障點最近的斷路器,以保證系統中其它非故障部分能繼續正常運行。系統中的繼電保護裝置能滿足上述要求的,就稱為有選擇性;否則就稱為沒有選擇性。
主保護和后備保護:
10KV供電系統中的電氣設備和線路應裝設短路故障保護。短路故障保護應有主保護、后備保護,必要時可增設輔助保護。
當在系統中的同一地點或不同地點裝有兩套保護時,其中有一套動作比較快,而另一套動作比較慢,動作比較快的就稱為主保護;而動作比較慢的就稱為后備保護。即:為滿足系統穩定和設備的要求,能以最快速度有選擇地切除被保護設備和線路故障的保護,就稱為主保護;當主保護或斷路器拒動時,用以切除故障的保護,就稱為后備保護。
后備保護不應理解為次要保護,它同樣是重要的。后備保護不僅可以起到當主保護應該動作而未動作時的后備,還可以起到當主保護雖已動作但最終未能達到切除故障部分的作用。除此之外,它還有另外的意義。為了使快速動作的主保護實現選擇性,從而就造成了主保護不能保護線路的全長,而只能保護線路的一部分。也就是說,出現了保護的死區。這一死區就必須利用后備保護來彌補不可。
近后備和遠后備:
當主保護或斷路器拒動時,由相臨設備或線路的保護來實現的后備稱為遠后備保護;由本級電氣設備或線路的另一套保護實現后備的保護,就叫近后備保護;
輔助保護:
為補充主保護和后備保護的性能或當主保護和后備保護退出運行而增設的簡單保護,稱為輔助保護。
(2)靈敏性
靈敏性系指繼電保護裝置對故障和異常工作狀況的反映能力。在保護裝置的保護范圍內,不管短路點的位置如何、不論短路的性質怎樣,保護裝置均不應產生拒絕動作;但在保護區外發生故障時,又不應該產生錯誤動作。保護裝置靈敏與否,一般用靈敏系數來衡量。保護裝置的靈敏系數應根據不利的運行方式和故障類型進行計算。靈敏系數Km為被保護區發生短路時,流過保護安裝處的最小短路電流Id.min與保護裝置一次動作電流Idz的比值,即:
Km=Id.min/Idz
靈敏系數越高,則反映輕微故障的能力越強。各類保護裝置靈敏系數的大小,根據保護裝置的不同而不盡相同。對于多相保護,Idz取兩相短路電流最小值Idz(2);對于10KV不接地系統的單相短路保護取單相接地電容電流最小值Ic.min;
(3)速動性
速動性是指保護裝置應能盡快地切除短路故障。
縮短切除故障的時間,就可以減輕短路電流對電氣設備的損壞程度,加快系統電壓的恢復,從而為電氣設備的自啟動創造了有利條件,同時還提高了發電機并列運行的穩定性。
所謂故障的切除時間是指保護裝置的動作時間與斷路器的跳閘時間之和。由于斷路器一經選定,其跳閘時間就已確定,目前我國生產的斷路器跳閘時間均在0.02S以下。所以實現速動性的關鍵是選用的保護裝置應能快速動作。
(4)可靠性
保護裝置應能正確的動作,并隨時處于準備狀態。如不能滿足可靠性的要求,保護裝置反而成為了擴大事故或直接造成故障的根源。為確保保護裝置動作的可靠性,則要求保護裝置的設計原理、整定計算、安裝調試要正確無誤;同時要求組成保護裝置的各元件的質量要可靠、運行維護要得當、系統應盡可能的簡化有效,以提高保護的可靠性。
4.繼電保護的基本原理
(1)電力系統故障的特點
電力系統中的故障種類很多,但最為常見、危害最大的應屬各種類型的短路事故。一旦出現短路故障,就會伴隨其產生三大特點。即:電流將急劇增大、電壓將急劇下降、電壓與電流之間的相位角將發生變化。
(2)繼電保護的類型
在電力系統中以上述物理量的變化為基礎,利用正常運行和故障時各物理量的差別就可以構成各種不同原理和類型的繼電保護裝置。如:
反映電流變化的電流保護,有定時限過電流保護、反時限過電流保護、電流速斷保護、過負荷保護和零序電流保護等;
反映電壓變化的電壓保護,有過電壓保護和低電壓保護;既反映電流的變化又反映電壓與電流之間相位角變化的方向過電流保護;
反映電壓與電流之間比值,也就是反映短路點到保護安裝處阻抗的距離保護;反映輸入電流與輸出電流之差的差動保護,其中又分為橫聯差動和縱聯差動保護;
用于反映系統中頻率變化的周波保護;
專門用于反映變壓器內部故障的氣體保護(即瓦斯保護),其中又分為輕瓦斯和重瓦斯保護;
專門用于反映變壓器溫度變化的溫度保護等。
另外,10KV系統中一般可在進線處裝設電流保護;在配電變壓器的高壓側裝設電流保護、溫度保護(油浸變壓器根據其容量大小尚應考慮裝設氣體保護);高壓母線分段處應根據具體情況裝設電流保護等。
三幾種常用電流保護的分析
1.反時限過電流保護
(1)什麼是反時限過電流保護
繼電保護的動作時間與短路電流的大小有關,短路電流越大,動作時間越短;短路電流越小,動作時間越長,這種保護就叫做反時限過電流保護。
(2)繼電器的構成
反時限過電流保護是由GL-15(25)感應型繼電器構成的。這種保護方式廣泛應用于一般工礦企業中,感應型繼電器兼有電磁式電流繼電器(作為起動元件)、電磁式時間繼電器(作為時限元件)、電磁式信號繼電器(作為信號元件)和電磁式中間繼電器(作為出口元件)的功能,用以實現反時限過電流保護;另外,它還有電磁速斷元件的功能,又能同時實現電流速斷保護。采用這種繼電器,就可以采用交流操作,無須裝設直流屏等設備;通過一種繼電器還可以完成兩種保護功能(體現了繼電器的多功能性),也可以大大簡化繼電保護裝置。但這種繼電器雖外部接線簡單,但內部結構十分復雜,調試比較困難;在靈敏度和動作的準確性、速動性等方面也遠不如電磁式繼電器構成的繼電保護裝置。
(3)反時限過電流保護的基本原理
當供電線路發生相間短路時,感應型繼電器KA1或(和)KA2達到整定的一定時限后動作,首先使其常開觸點閉合,這時斷路器的脫扣器YR1或(和)YR2因有KA1或(和)KA2的常閉觸點分流(短路),而無電流通過,故暫時不會動作。但接著KA1或(KA2)的常閉觸點斷開,因YR1或(和)YR2因“去分流”而通電動作,使斷路器跳閘,同時繼電器本身的信號掉牌掉下,給出信號。
在這里應予說明,在采用“去分流”跳閘的反時限過電流保護裝置中,如繼電器的常閉觸點先斷開而常開觸點后閉合時,則會出現下列問題:
1)繼電器在其常閉觸點斷開時即先失電返回,因此其常開觸點不可能閉合,因此跳閘線圈也就不能通電跳閘;
2)繼電器的常閉觸點如先斷開,CT的二次側帶負荷開路,將產生數千伏的高電壓、比差角差增大、計量不準以及鐵心發熱有可能燒毀絕緣等,這是不允許的。
2.定時限過電流保護
(1)什麼是定時限過電流保護
繼電保護的動作時間與短路電流的大小無關,時間是恒定的,時間是靠時間繼電器的整定來獲得的。時間繼電器在一定范圍內是連續可調的,這種保護方式就稱為定時限過電流保護。
(2)繼電器的構成
定時限過電流保護是由電磁式時間繼電器(作為時限元件)、電磁式中間繼電器(作為出口元件)、電磁式電流繼電器(作為起動元件)、電磁式信號繼電器(作為信號元件)構成的。它一般采用直流操作,須設置直流屏。定時限過電流保護簡單可靠、完全依靠選擇動作時間來獲得選擇性,上、下級的選擇性配合比較容易、時限由時間繼電器根據計算后獲取的參數來整定,動作的選擇性能夠保證、動作的靈敏性能夠滿足要求、整定調試比較準確和方便。這種保護方式一般應用在10~35KV系統中比較重要的變配電所。
(3)定時限過電流保護的基本原理
10KV中性點不接地系統中,廣泛采用的兩相兩繼電器的定時限過電流保護的原理接線圖。它是由兩只電流互感器和兩只電流繼電器、一只時間繼電器和一只信號繼電器構成。
當被保護線路只設有一套保護,且時間繼電器的容量足大時,可用時間繼電器的觸點去直接接通跳閘回路,而省去出口中間繼電器。
當被保護線路中發生短路故障時,電流互感器的一次電流急劇增加,其二次電流隨之成比例的增大。當CT的二次電流大于電流繼電器的起動值時,電流繼電器動作。由于兩只電流繼電器的觸點是并聯的,故當任一電流繼電器的觸點閉合,都能接通時間繼電器的線圈回路。這時,時間繼電器就按照預先整定的時間動作使其接點吸合。這樣,時間繼電器的觸點又接通了信號繼電器和出口中間繼電器的線圈,使其動作。出口中間繼電器的觸點接通了跳閘線圈回路,從而使被保護回路的斷路器跳閘切斷了故障回路,保證了非故障回路的繼續運行。而信號繼電器的動作使信號指示牌掉下并發出警報信號。
由上不難看出,保護裝置的動作時間只決定于時間繼電器的預先整定的時間,而與被保護回路的短路電流大小無關,所以這種過電流保護稱為定時限過電流保護。
(4)動作電流的整定計算
過流保護裝置中的電流繼電器動作電流的整定原則,是按照躲過被保護線路中可能出現的最大負荷電流來考慮的。也就是只有在被保護線路故障時才啟動,而在最大負荷電流出現時不應動作。為此必須滿足以下兩個條:
1)在正常情況下,出現最大負荷電流時(即電動機的啟動和自啟動電流,以及用戶負荷的突增和線路中出現的尖峰電流等)不應動作。即:
Idz>Ifh.max
式中Idz----過電流保護繼電器的一次動作電流;
Ifh.max------最大負荷電流
2)保護裝置在外部故障切除后應能可靠地返回。因為短路電流消失后,保護裝置有可能出現最大負荷電流,為保證選擇性,
已動作的電流繼電器在這時應當返回。因此保護裝置的一次返回電流If應大于最大負荷電流fh.max。即:
If>Ifh.max
因此,定時限過電流裝置電流繼電器的動作電流Idz.j為:
Idz.j=(Kk.Kjx/Kf.Nlh).Ifh.max
式中
Kk------可靠系數,考慮到繼電器動作電流的誤差和計算誤差而設。一般取為1.15~1.25Kjx------由于繼電器接入電流互感器二次側的方式不同而引入的一個系數。電流互感器為三相完全星形接線和不完全星形接線時
Kjx=1;如為三角形接線和兩相電流差接線時Kjx=1.732;
Kf-------返回系數,一般小于1;
Nlh------電流互感器的變比。
(5)動作時限的整定原則
為使過電流保護具有一定的選擇性,各相臨元件的過電流保護應具有不同的動作時間。
在線路XL-1、XL-2、XL-3的靠近電源端分別裝有過電流保護裝置1、2、3。當D1點發生短路時,短路電流由電源提供并流過保護裝置1、2、3,當短路電流大于它們的整定值時,各套保護裝置均啟動。但按選擇性的要求,應只由保護裝置3(離故障點最近)動作于跳閘。在故障切除后,保護裝置1、2返回。因此就必須使保護裝置2的動作時間較保護裝置1長一些;而保護裝置3又要比保護裝置2長一些,并依次類推,即:
t1>t2>t3
不難看出,各級保護裝置的動作時限是由末端向電源端逐級增大的。也就是越靠近電源端,保護的動作時限越長,有如階梯一樣,故稱為階梯性時限特性。各級之間的時限均差一個固定的數值,稱其為時限級差Dt。對于定時限過電流保護的時限級差Dt一般為0.5S;對于反時限的時限級差Dt
一般為0.7S。可是,越靠近電源端線路的阻抗越小,短路電流將越大,而保護的動作時間越長。也就是說過電流保護存在著缺陷。這種缺陷就必須由電流速斷保護來彌補不可。
(6)過電流保護的保護范圍
過流保護可以保護設備的全部,也可以保護線路的全長,還可以作為相臨下一級線路穿越性故障的后備保護。
3.電流速斷保護
(1)什麼是電流速斷保護
電流速斷保護是一種無時限或略帶時限動作的一種電流保護。它能在最短的時間內迅速切除短路故障,減小故障持續時間,防止事故擴大。
電流速斷保護又分為瞬時電流速斷保護和略帶時限的電流速斷保護兩種。
(2)電流速斷保護的構成
電流速斷保護是由電磁式中間繼電器(作為出口元件)、電磁式電流繼電器(作為起動元件)、電磁式信號繼電器(作為信號元件)構成的。它一般不需要時間繼電器。常采用直流操作,須設置直流屏。電流速斷保護簡單可靠、完全依靠短路電流的大小來確定保護是否需要啟動。它是按一定地點的短路電流來獲得選擇性動作,動作的選擇性能夠保證、動作的靈敏性能夠滿足要求、整定調試比較準確和方便。
(3)瞬時電流速斷保護的整定原則和保護范圍
瞬時電流速斷保護與過電流保護的區別,在于它的動作電流值不是躲過最大負荷電流,而是必須大于保護范圍外部短路時的最大短路電流。即按躲過被保護線路末端可能產生的三相最大短路電流來整定。從而使速斷保護范圍被限制在被保護線路的內部,從整定值上保證了選擇性,因此可以瞬時跳閘。當在被保護線路外部發生短路時,它不會動作。所以不必考慮返回系數。由于只有當短路電流大于保護裝置的動作電流時,保護裝置才能動作。所以瞬時電流速斷保護不能保護設備的全部,也不能保護線路的全長,而只能保護線路的一部分。對于最大運行方式下的保護范圍一般能達到線路全長的50%即認為有良好的保護效果;對于在最小運行方式下的保護范圍能保護線路全長的15%~20%,即可裝設。保護范圍以外的區域稱為“死區”。因此,瞬時電流速斷保護的任務是在線路始端短路時能快速地切除故障。
當線路故障時,瞬時電流速斷保護動作,運行人員根據其保護范圍較小這一特點,可以判斷故障出在線路首端,并且靠近保護安裝處;如為雙電源供電線路,則由兩側的瞬時電流速斷保護同時動作或同時都不動作,可判斷故障在線路的中間部分。
(4)瞬時電流速斷保護的基本原理
瞬時電流速斷保護的原理與定時限過電流保護基本相同。只是由一只電磁式中間繼電器替代了時間繼電器。
中間繼電器的作用有兩點:其一是因電流繼電器的接點容量較小,不能直接接通跳閘線圈,用以增大接點容量;其二是當被保護線路上裝有熔斷器時,在兩相或三相避雷器同時放電時,將造成短時的相間短路。但當放完電后,線路即恢復正常,因此要求速斷保護既不誤動,又不影響保護的快速性。利用中間繼電器的固有動作時間,就可避開避雷器的放電動作時間。
(5)略帶時限的電流速斷保護
瞬時電流速斷保護最大的優點是動作迅速,但只能保護線路的首端。而定時限過電流保護雖能保護
線路的全長,但動作時限太長。因此,常用略帶時限的電流速斷保護來消除瞬時電流速斷保護的“死區”。要求略帶時限的電流速斷保護能保護全線路。因此,它的保護范圍就必然會延伸到下一段線路的始端去。這樣,當下一段線路始端發生短路時,保護也會起動。為了保證選擇性的要求,須使其動作時限比下一段線路的瞬時電流速斷保護大一個時限級差,其動作電流也要比下一段線路瞬時電流速斷保護的動作電流大一些。略帶時限的電流速斷保護可作為被保護線路的主保護。略帶時限的電流速斷保護的原理接線和定時限過電流保護的原理接線相同。
4.三段式過電流保護裝置
由于瞬時電流速斷保護只能保護線路的一部分,所以不能作為線路的主保護,而只能作為加速切除線路首端故障的輔助保護;略帶時限的電流速斷保護能保護線路的全長,可作為本線路的主保護,但不能作為下一段線路的后備保護;定時限過電流保護既可作為本級線路的后備保護(當動作時限短時,也可作為主保護,而不再裝設略帶時限的電流速斷保護。),還可以作為相臨下一級線路的后備保護,但切除故障的時限較長。
一般情況下,為了對線路進行可靠而有效的保護,也常把瞬時電流速斷保護(或略帶時限的電流速斷保護)和定時限過電流保護相配合構成兩段式電流保護。
對于第一段電流保護,究竟采用瞬時電流速斷保護,還是采用略帶時限的電流速斷保護,可由具體情況確定。如用在線路---變壓器組接線,以采用瞬時電流速斷保護為佳。因在變壓器高壓側故障時,切除變壓器和切除線路的效果是一樣的。此時,允許用線路的瞬時電流速斷保護,來切除變壓器高壓側的故障。也就是說,其保護范圍可保護到線路全長并延伸到變壓器高壓側。這時的第一段電流保護可以作為主保護;第二段一般均采用定時限過流保護作為后備保護,其保護范圍含線路---變壓器組的全部。
通常在被保護線路較短時,第一段電流保護均采用略帶時限的電流速斷保護作為主保護;第二段采用定時限過流保護作為后備保護。
在實際中還常采用三段式電流保護。就是以瞬時電流速斷保護作為第一段,以加速切除線路首端的故障,用作輔助保護;以略帶時限的電流速斷保護作為第二段,以保護線路的全長,用作主保護;以定時限過電流保護作為第三段,以作為線路全長和相臨下一級線路的后備保護。對于北京電信的10KV(含35KV)供電線路今后宜選用兩段式或三段式電流保護。
因為這種保護的設置可以在相臨下一級線路的保護或斷路器拒動時,本級線路的定時限過流保護可以動作,起到遠后備保護的作用;如本級線路的主保護(瞬時電流速斷或略帶時限的電流速斷保護)拒動時,則本級線路的定時限過電流保護可以動作,以起到近后備的作用。
5.零序電流保護
電力系統中發電機或變壓器的中性點運行方式,有中性點不接地、中性點經消弧線圈接地和中性點直接接地三種方式。10KV系統采用的是中性點不接地的運行方式。
系統運行正常時,三相是對稱的,三相對地間均勻分布有電容。在相電壓作用下,每相都有一個超前90°的電容電流流入地中。這三個電容電流數值相等、相位相差120°,其和為零.中性點電位為零。
假設A相發生了一相金屬性接地時,則A相對地電壓為零,其他兩相對地電壓升高為線電壓,三個線電壓不變。這時對負荷的供電沒有影響。按規程規定還可繼續運行2小時,而不必切斷電路。這也是采用中性點不接地的主要優點。但其他兩相電壓升高,線路的絕緣受到考驗、有發展為兩點或多點接地的可能。應及時發出信號,通知值班人員進行處理。
10KV中性點不接地系統中,當出現一相接地時,利用三相五鐵心柱的電壓互感器(PT)的開口三角形的開口兩端有無零序電壓來實現絕緣監察。它可以在PT柜上通過三塊相電壓表和一塊線電壓表(通過轉換開關可觀察三個線電壓)看到“一低、兩高、三不變”。接在開口三角形開口兩端的過電壓繼電器動作,其常開接點接通信號繼電器,并發出預告信號。采用這種裝置比較簡單,但不能立即發現接地點,因為只要網絡中發生一相接地,則在同一電壓等級的所有工礦企業的變電所母線上,均將出現零序電壓,接有帶絕緣監視電壓互感器的電力用戶都會發出預告信號。也就是說該裝置沒有選擇性。為了查找接地點,需要電氣人員按照預先制定的“拉路序位圖”依次拉路查找,并隨之合上未接地的回路,直到找到接地點為止。可以看出,這種方法費力、費時、安全性差,在某些情況下這樣做還是不允許的。因此,這種裝置存在一定的缺陷。
當網絡比較復雜、出線較多、可靠性要求高,采用絕緣監察裝置是不能滿足運行要求時,可采用零序電流保護裝置。它是利用接地故障線路零序電流較非接地故障線路零序電流大的特點構成的一種保護裝置。
零序電流保護一般使用在有條件安裝零序電流互感器的電纜線路或經電纜引出的架空線路上。當在電纜出線上安裝零序電流互感器時,其一次側為被保護電纜的三相導線,鐵心套在電纜外,其二次側接零序電流繼電器。當正常運行或發生相間短路時,一次側電流為零。二次側只有因導線排列不對稱而產生的不平衡電流。當發生一相接地時,零序電流反映到二次側,并流入零序電流繼電器,使其動作發出信號。在安裝零序電流保護裝置時,特別注意的一點是:電纜頭的接地線必須穿過零序電流互感器的鐵心。這是由于被保護電纜發生一相接地時,全靠穿過零序電流互感器鐵心的電纜頭接地線通過零序電流起作用的。否則互感器二次側也就不能感應出電流,因而繼電器也就不可能動作。
不難理解,當某一條線路上發生一相接地時,非接地線路上的零序電流為本身的零序電流。因此,為了保證動作的選擇性,在整定時,保護裝置的啟動電流Idz應大于本線路的電容電流,即:
Idz=Kh.3Uxan.w.Co=Kh.Io
式中Idz------保護裝置的啟動電流;
Kh-------可靠系數,如無延時,考慮到不穩定間歇性電弧所發生的振蕩涌流時,取4~5;如延時為0.5S時,則取1.5~2;
Uxan------相電壓值;
Co--------被保護線路每相的對地電容;
Io--------被保護線路的總電容電流。
按上式整定后,還需校驗在本線路上發生一相接地時的靈敏系數Klm,由于流經接地線路上的零序電流為全網絡中非接地線路電容電流的總和,可用3Uxan.w.(CS-Co)表示,因此靈敏系數為:
Klm=3Uxan.w.(CS-Co)/Kh.3Uxan.w.Co
=(CS-Co)/Kh.Co
上式可改寫成:
Klm=I0S-Io/Kh.Io
=I0S-Io/Idz
式中CS------同一電壓等級網絡中,各元件每相對地電容之和;
I0S------與CS
相對應的對地電容電流之和。對電纜線路取大于或等于1.25;架空線路取1.5;對于架空線路,由于沒有特制的零序電流互感器,如欲安裝零序電流保護,可把三相三只電流互感器的同名端并聯在一起,構成零序電流過濾器,再接上零序電流繼電器。其動作電流整定值中,要考慮零序電流過濾器中不平衡電流的影響。
四對北京電信10KV系統中繼電保護的綜合評價
1.定時限過電流保護與反時限過電流保護的配置
10KV系統中的上、下級保護之間的配合條件必須考慮周全,考慮不周或選配不當,則會造成保護的非選擇性動作,使斷路器越級跳閘。保護的選擇性配合主要包括上、下級保護之間的電流和時限的配合兩個方面。應該指出,定時限過電流保護的配合問題較易解決。由于定時限過電流保護的時限級差為0.5S,選擇電網保護裝置的動作時限,一般是從距電源端最遠的一級保護裝置開始整定的。為了縮短保護裝置的動作時限,特別是縮短多級電網靠近電源端的保護裝置的動作時限,其中時限級差起著決定的作用,因此希望時限級差越小越好。但為了保證各級保護裝置動作的選擇性,時限級差又不能太小。雖然反時限過電流保護也是按照時限的階梯原則來整定,其時限級差一般為0.7S。而且反時限過電流保護的動作時限的選擇與動作電流的大小有關。也就是說,反時限過電流保護隨著短路電流與繼電器動作電流的比值而變,因此整定反時限過電流保護時,所指的時間都是在某一電流值下的動作時間。還有,感應型繼電器慣性較大,存在一定的誤差,它的特性不近相同,新舊、型的特性也不相同。所以,在實際運行整定時,就不能單憑特性曲線作為整定的依據,還應該作必要的實測與調試。比較費力、費事。因此,反時限過電流保護時限特性的整定和配合就比定時限過電流保護裝置復雜得多。通過分析可以看出,北京電信10KV新建及在建工程中,應以配置三段式或兩段式定時限過電流保護、瞬時電流速斷保護和略帶時限的電流速斷保護為好。
2.北京電信10KV系統中高壓設備的配置
目前,北京電信10KV系統中高壓開關柜的配置主要有兩大類:即固定式高壓開關柜和手車式高壓開關柜。關于固定式高壓開關柜是我國解放初期自前蘇聯引進的老產品,柜型高大、有足夠的安全距離、但防護等級低、元器件陳舊、防電擊水平較低;而手車式高壓開關柜是近年來引進國外技術,消化吸收研制的換代產品,體積縮小、防護等級大大提高、元器件的選用比較先進、防電擊水平較高。其主要特點可歸納為:它有四室(手車室、電纜室、母線室和繼電儀表室)、七車(斷路器手車、隔離手車、接地手車、所用變壓器手車、電壓互感器手車、電壓互感器和避雷器手車、避雷器和電容器手車)、三個位置(工作位置、試驗位置和拖出柜外檢修位置)和兩個鎖定(工作位置的鎖定和試驗位置的鎖定)。它用高壓一次隔離觸頭替代了高壓隔離開關、用接地開關替代了臨時接地線等。對于系統的運行安全提供了很好的條件。關于配電變壓器安裝于主機樓時,一般均采用了防火等級較高的干式變壓器,筆者曾率先嘗試采用了D/Yo-11接線組別的干式變壓器(傳統采用Y/Yo-12接線組別),其一次接成了D形接線,為電信部門產生的大量高次諧波提供了通路,這樣就較為有效的防止了我們電信部門的用電對系統造成的諧波污染(目前電業部門正在諧波管理方面考慮采取必要的經濟措施);同時,采用了這種接線組別,使得繼電保護的靈敏性有所提高。按照IEC及新的國家標準GB50054-96的要求,應逐步推廣采用D/Yo-11接線組別的配電變壓器。
3.關于10KV一相接地保護方式的探討
一、概述
隨著微機繼電保護裝置的廣泛應用和變電站綜合自動化水平的不斷提高,各種智能設備采集的模擬量、開關量、一次設備狀態量大大增加,運行人員可以從中獲取更多的一、二次設備的實時信息。但是,由于目前的微機型二次設備考慮較多的是對以往設備功能的替代,導致這些設備基本上是獨立運行,致使它們采集的大量信息白白流失,未能得到充分利用。
電網是一個不可分割的整體,對整個電網的一、二次設備信息進行綜合利用,對保證電網安全穩定運行具有重大的意義。近幾年,計算機和網絡技術的飛速發展,使綜合利用整個電網的一、二次設備信息成為可能。電網繼電保護綜合自動化系統就是綜合利用整個電網智能設備所采集的信息,自動對信息進行計算分析,并調整繼電保護的工作狀態,以確保電網運行安全可靠的自動化系統,它可以實現以下主要功能。
1.實現繼電保護裝置對系統運行狀態的自適應。
2.實現對各種復雜故障的準確故障定位。
3.完成事故分析及事故恢復的繼電保護輔助決策。
4.實現繼電保護裝置的狀態檢修。
5.對線路縱聯保護退出引起的系統穩定問題進行分析,并提供解決方案。
6.對系統中運行的繼電保護裝置進行可靠性分析。
7.自動完成線路參數修正。
二、系統構成
站在電網的角度,我們來分析電網繼電保護綜合自動化系統獲取信息的途徑。電網的結構和參數,可以從調度中心獲得;一次設備的運行狀態及輸送潮流,可以通過EMS系統實時獲得;保護裝置的投退信息,由于必須通過調度下令,由現場執行,因此可以從調度管理系統獲得,并從變電站監控系統得到執行情況的驗證;保護裝置故障及異常,可以從微機保護裝置獲得;電網故障信息,可以從微機保護及微機故障錄波器獲得。
通過以上分析,可以看出,實現電網繼電保護綜合自動化系統的信息資源是充分的。為了更好的利用信息資源,應建立客戶/服務器體系的系統結構,按此結構將系統分解成幾個部分,由客戶機和服務器協作來實現上述七種主要功能。這樣就可以實現最佳的資源分配及利用,減少網絡的通信負擔,提高系統運行的總體性能。
客戶機設在變電站,主要實現以下功能:
1.管理與保護及故障錄波器的接口,實現對不同廠家的保護及故障錄波器的數據采集及轉換功能。在正常情況下巡檢保護的運行狀態,接收保護的異常報告。在電網發生故障后接收保護和故障錄波器的事故報告。
2.管理與監控系統主站的接口,查詢現場值班人員投退保護的操作。
3.管理與遠動主站的接口,將裝置異常、保護投退及其它關鍵信息通過遠動主站實時上送調度端。
4.執行數據處理、篩選、分析功能。實現對保護采集數據正確性的初步分析,篩選出關鍵信息。
5.管理及修改保護定值。
6.向服務器發出應用請求,并接收服務器反饋信息。
7.主動或按服務器要求傳送事故報告,執行服務器對指定保護和故障錄波器的查詢。
服務器設在調度端,可由一臺或多臺高性能計算機組成,主要實現以下功能:
1.向客戶機發送指令,接收并回答客戶機的請求。
2.接收客戶機傳送的事故報告。
3.控制對EMS系統共享數據庫的存取。獲得一次設備狀態、輸送潮流及客戶機通過遠動主站上送調度端的信息。
4.通過調度運行管理信息系統獲得調度員對保護的投退命令、設備檢修計劃等信息。
5.與繼電保護管理信息系統交換保護配置、定值、服役時間、各種保護裝置的正動率及異常率等信息,實現繼電保護裝置的可靠性分析。
6.執行故障計算程序、繼電保護定值綜合分析程序、事故分析程序、保護運行狀態監測程序、穩定分析程序等應用軟件。
在實現了變電站綜合自動化的廠站,客戶機可在保護工程師站的基礎上進行功能擴充,并成為變電站綜合自動化系統的組成部分。在沒有保護工程師站的廠站,可通過保護改造工程,建立變電站保護信息處理系統,使之成為客戶機。
由以上功能劃分可以看出,客戶機與服務器之間的數據交換量并不大,僅在電網發生故障后,由于與故障設備有關聯的廠站的客戶機需要向服務器傳送詳細的故障報告,才會出現較大的信息量。因此,客戶機和服務器之間的聯絡,在目前條件下,完全可以采用調制解調器進行異步通信。將來如有條件,建議盡量采用廣域網交換數據。
三、功能分析
1.實現繼電保護裝置對系統運行狀態的自適應。
電網繼電保護的整定計算十分復雜,由于傳統的繼電保護以預先整定、實時動作為特征,保護定值必須適應所有可能出現的運行方式的變化。假如一個變電站有15個元件,僅考慮本站檢修2個元件的組合方式就已經達到100多個,而周圍系統機組停運、500KV自耦變的檢修及系統開環對短路電流和分支系數的影響甚至可能比本站元件檢修還要大,它們均需做為組合方式加以考慮,這就使組合方式之多達到難以想像的數量。
為使預先整定的保護定值適應所有可能出現的運行方式的變化,必然出現以下問題:
A.縮短了保護范圍,延長了保護動作延時。
B.被迫退出某些受運行方式變化影響較大的保護。如四段式的零序電流保護僅能無配合的使用其最后兩段。
C.可能還存在由于運行方式考慮不周而出現失去配合。
D.被迫限制一次系統運行方式。
電網繼電保護綜合自動化系統可以徹底改變這種局面。只要在調度端的服務器安裝故障計算及繼電保護定值綜合分析程序,依靠從EMS系統獲得的系統一次設備的運行狀態,就可以迅速準確的判斷出當前繼電保護裝置整定值的可靠性,如出現部分后備保護定值不配合時,根據從調度管理系統獲得的線路縱聯保護及母差保護的投入情況,確定是否需要調整定值。如需要調整,可通過調度端服務器向變電站的客戶機下達指令,由客戶機動態修改保護定值,從而實現繼電保護裝置對系統運行狀態的自適應。以上所有計算分析工作,均依靠調度端服務器實時自動完成,這樣,繼電保護整定值就無需預先考慮那些出現機率很小的組合方式,從而解決困擾繼電保護整定計算工作的不同運行方式下可靠性與選擇性存在矛盾的問題。
目前,系統中運行的保護裝置可分為三類:第一類為非微機型保護;第二類為具備多個定值區并可切換的微機保護,一般不具備遠方改定值的功能;第三類為新型微機保護,具備遠方改定值的功能。對非微機型保護,在調度端可以將其設置為不能自動調整定值的保護,依靠周圍保護裝置的定值調整,實現與此類保護的配合。對第二類保護,可以事先設置多套整定值,調度端只是通過變電站客戶機,控制其在當前運行方式下采用那套整定值來實現定值的自適應。
為提高可靠性,保護定值的自適應可與調度系統的檢修申請相結合。當電網繼電保護綜合自動化系統從調度管理系統獲得計劃檢修工作申請后,即通過計算分析,事先安排定值的調整,并做相應的事故預想(如在檢修基礎上再發生故障時保護的配合關系計算),從而大大提高系統繼電保護裝置的效能和安全水平。
2.實現對各種復雜故障的準確故障定位。
目前的保護和故障錄波器的故障測距算法,一般分為故障分析法和行波法兩類。其中行波法由于存在行波信號的提取和故障產生行波的不確定性等問題而難以在電力生產中得到較好的運用。而故障分析法如果想要準確進行故障定位,必須得到故障前線路兩端綜合阻抗、相鄰線運行方式、與相鄰線的互感等信息,很顯然,僅利用保護或故障錄波器自己采集的數據,很難實現準確的故障定位。另外,對于比較復雜的故障,比如跨線異名相故障,單端分析手段已經無法正確判斷故障性質和故障距離,因此,往往出現誤報。
我們知道,得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確,因此,通過電網繼電保護綜合自動化系統,可以徹底解決這個問題。調度端數據庫中,已經儲備了所有一次設備參數、線路平行距離、互感情況等信息,通過共享EMS系統的數據,可以獲得故障前系統一次設備的運行狀態。故障發生后,線路兩端變電站的客戶機可以從保護和故障錄波器搜集故障報告,上送到服務器。調度端服務器將以上信息綜合利用,通過比較簡單的故障計算,就可確定故障性質并實現準確的故障定位。
3.完成事故分析及事故恢復的繼電保護輔助決策。
系統發生事故后,往往有可能伴隨著其它保護的誤動作。傳統的事故分析由人完成,受經驗和水平的影響,易出現偏差。由于電網繼電保護綜合自動化系統搜集了故障前后系統一次設備的運行狀態和變電站保護和故錄的故障報告,可以綜合線路兩端保護動作信息及同一端的其它保護動作信息進行模糊分析,并依靠保護和故錄的采樣數據精確計算,從而能夠迅速準確的做出判斷,實現事故恢復的繼電保護輔助決策。
當系統發生較大的事故時,由于在較短時間內跳閘線路較多,一般已經超過了繼電保護能夠適應的運行方式,此時保護可能已經處于無配合的狀態。此時進行事故恢復,不僅需要考慮一次運行方式的合理,還需要考慮保護是否能夠可靠并有選擇的切除故障。借助電網繼電保護綜合自動化系統,可以分析當前運行方式下保護的靈敏度及配合關系,并通過遠程改定值,完成繼電保護裝置對系統事故運行狀態的自適應。
4.實現繼電保護裝置的狀態檢修。
根據以往的統計分析數據,設計存在缺陷、二次回路維護不良、廠家制造質量不良往往是繼電保護裝置誤動作的主要原因。由于微機型繼電保護裝置具有自檢及存儲故障報告的能力,因此,可以通過電網繼電保護綜合自動化系統實現繼電保護裝置的狀態檢修。具體做法如下:
A.依靠微機保護的自檢功能,可以發現保護裝置內部的硬件異常。變電站的客戶機搜集到保護的異常報告后,立即向相應的調度端發出告警,從而使設備故障能夠得到及時處理,縮短保護裝置退出時間。
B.保護的開入量一般有開關輔助節點、通訊設備收信、合閘加速、啟動重合閘、其他保護動作等幾種,這些開入量對保護的可靠運行起關鍵作用。變電站的客戶機可以監視保護裝置的開關量變位報告。當發現保護的開入量發生變位時,可以通過查詢變電站一次系統狀態以及其他保護和錄波器的動作信息確定變位的正確性。這樣,就可以及早發現問題,預防一部分由設計缺陷或二次回路維護不良引起的誤動作。
C.為防止由于PT、CT兩點接地、保護裝置交流輸入回路異常、采樣回路異常等引起保護誤動作,可以由變電站的客戶機將保護啟動以后的報告進行分析,首先可以判斷取自同一CT的兩套保護采樣值是否一致,其次,可以判斷本站不同PT對同一故障的采樣值是否一致。另外,還可以將從保護故障報告中篩選出的故障電流基波穩態值及相位等信息上傳到調度端,與線路對側的數據進行比較,以發現PT兩點接地等問題。
通過以上措施,可以加強狀態檢修,相應延長定期檢修周期,使保護裝置工作在最佳狀態。同時,還可以提高維護管理水平,減輕繼電保護工作人員的勞動強度,減少因為人員工作疏漏引起的誤動作。
5.對線路縱聯保護退出引起的系統穩定問題進行分析,并提供解決方案。
隨著電網的發展,系統穩定問題日益突出。故障能否快速切除成為系統保持穩定的首要條件,這就對線路縱聯保護的投入提出較高要求。但是,在目前情況下,由于通道或其它因素的影響,導致線路雙套縱聯保護退出時,只能斷開線路以保證系統穩定和后備保護的配合。這種由于二次設備退出而影響一次設備運行的狀況是我們所不愿意看到的。
借助電網繼電保護綜合自動化系統,我們可以完成以下工作。
A.根據系統當前運行狀態校驗保護的配合關系。
B.根據線路兩側定值確定不同點故障保護的切除時間。
C.根據系統當前的運行方式、輸送潮流、系統及機組的參數,結合故障切除時間,判斷線路不同點故障時系統能否保持穩定。
D.判斷能否通過控制輸送潮流保持系統穩定。
E.反推系統保持穩定需要的故障切除時間。
F.通過遠程改定值,保證系統穩定及周圍系統后備保護的配合。
這樣,我們就可以大大減輕縱聯保護的退出給系統一次設備的運行帶來的影響,并提供縱聯保護的退出的整體解決方案。
6.對系統中運行的繼電保護裝置進行可靠性分析。
通過與繼電保護管理信息系統交換保護配置、服役時間、各種保護裝置的正動率及異常率等信息,電網繼電保護綜合自動化系統可以實現對繼電保護裝置的可靠性分析。特別是當某種保護或保護信號傳輸裝置出現問題,并暫時無法解決時,通過將此類裝置的可靠性評價降低,減輕系統對此類保護的依賴,通過遠程調整定值等手段,實現周圍系統保護的配合,防止因此類保護的拒動而擴大事故。
7.自動完成線路參數修正。
由于征地的限制,新建線路往往與原有線路共用線路走廊,線路之間電磁感應日益增大,造成新線路參數測試的不準確以及原有線路參數的變化。現在,依靠電網繼電保護綜合自動化系統,可以將每次故障周圍系統保護的采樣數據進行收集,利用線路兩端的故障電流、故障電壓,校核并修正線路參數,實現線路參數的自動在線測量,從而提高繼電保護基礎參數的可靠性,保證系統安全。
四、實現本系統的難點分析
1.管理問題
從技術上說,實現電網繼電保護綜合自動化系統的條件已經成熟,無論是變電站客戶機對保護信息的搜集、信息的網絡傳輸還是調度端服務器對EMS系統共享數據的讀取、故障及穩定分析計算,都可以得到解決。主要的實施難度在于此系統需要綜合繼電保護、調度、方式、遠動、通信以及變電站綜合自動化等各個專業的技術,并且涉及到控制運行設備,其它專業一般不愿牽扯其中,因此只有解決好管理問題,才可能順利實施。例如,目前變電站客戶機對信息的搜集,完全可以也應該納入到變電站綜合自動化系統,但是,由于管理界面的劃分,有些運行單位希望保護專業獨立組網搜集信息,這樣就造成資源的分割和浪費,不利于今后對系統的擴展。為了保證電力系統的安全運行,希望在將來的保護設計導則中,對此類問題統一予以規范。
2.安全性問題
由于電網繼電保護綜合自動化系統的功能強大,并且可以控制運行設備,與電網的安全穩定運行息息相關,因此在設計之初,就必須對系統的安全性問題給予足夠重視。可以說,安全性解決的好壞,將是本系統能否運用的關鍵。初步設想,調度端服務器必須采用雙機熱備用方式保證硬件安全;通過遠方修改保護定值時,客戶機必須通過加密的數字簽名核實調度端傳送定值的可信度,并通過校驗碼及數據回送保證定值的可靠性。并且,當客戶機向保護傳送定值時,必須不能影響保護的正常性能。在這方面,還需要做大量的工作。
3.規約問題
2繼電保護系統的主要構成
電力系統是電能供應傳輸的關鍵,與繼電保護系統聯用共同構成安全穩定的用電環境。繼電保護在電力系統中是不可缺少的部分,常作為用電安全保護平臺,主要構成包括:
2.1測量部分
是測量通過被保護的電氣元件的物理參量,并與給定的值進行比較,根據比較的結果,給出“是”“非”性質的一組邏輯信號,從而判斷保護裝置是否應該啟動。例如,輸電線路以變壓器為運轉中心,對原始電能高低進行調配,按照用電區域電壓承載力實施調控,通過繼電測量可促進電能調配效率提高。
2.2邏輯部分
使保護裝置按一定的邏輯關系判定故障的類型和范圍,最后確定是應該使斷路器跳閘、發出信號或是否動作及是否延時等,并將對應的指令傳給執行輸出部分。例如,繼電保護器與配電變壓器組合應用,可根據用電單位要求,嚴格控制配電量、電壓高低,保障用戶安全用電。
2.3輸出部分
根據邏輯傳過來的指令,最后完成保護裝置所承擔的任務。如在故障時動作于跳閘,不正常運行時發出信號,而在正常運行時不動作等。繼電保護器按照電力控制指令要求,執行某個安全防護程序,并且將指令結果安全傳輸至調度中心,從而提升了繼電保護控制器的工作性能。
3電氣工程中的繼電保護功能
人類社會正處于信息化改革階段,信息技術應用于各個行業是發展趨勢,也是繼電保護技術控制的關鍵。繼電保護是電氣工程科技化改造的新方向,充分利用互聯網平臺優勢,解決傳統電力運行的不足,加快了電力系統網絡層次改造進度,構建了符合現代化電力控制的安全調度模式。
3.1監控功能
電力系統安全化發展是必然趨勢,繼電保護系統與電源系統、配電系統等共同運行,共同參與電能資源調配運輸工作,解決地區用電操作困境。監視電力系統的正常運行,當被保護的電力系統元件發生故障時,應該由該元件的繼電保護裝置迅速準確地給脫離故障元件最近的斷路器發出跳閘命令,使故障元件及時從電力系統中斷開,以最大限度地減少對電力系統元件本身的損壞。
3.2調整功能
電氣系統將朝著“高效、優質、安全”等方向發展,采用繼電保護技術輔助網絡化運行,這是電氣系統優化升級的主要思路。反映電氣設備的不正常工作情況,并根據不正常工作情況和設備運行維護條件的不同發出信號,提示值班員迅速采取措施,使之盡快恢復正常,或由裝置自動地進行調整,或將那些繼續運行會引起事故的電氣設備予以切除。
3.3安全功能
實現電力系統的自動化和遠程操作,以及工業生產的自動控制,均要借助繼電保護技術功能,如自動重合閘、備用電源自動投入、遙控、遙測等。當系統和設備發生的故障足以損壞設備或危及電網安全時,繼電保護裝置能最大限度地減少對電力系統元件本身的損壞,降低對電力系統安全供電的影響,如單相接地、變壓器輕、重瓦斯信號、變壓器溫升過高等。
3.4防御功能
繼電保護技術是對電氣工程故障的綜合防護,提前發現潛在故障風險。當前,電力系統均配備了專用監測系統,主要是對電力設備運行情況實時監控,為電網調度與控制提供真實信號。狀態監測系統是多項科技的綜合應用,由數字化設備參與智能調度運行,對各種電氣設備或元件均起到防護作用。例如,線路電流超標會引起燒損、斷電等故障,借助狀態監測平臺可及時防御故障發生。
4基于繼電保護自動化控制系統繼電保護
自動化不僅配備了專用調度中心,也增加了一系列的安全保護基礎,形成相對穩定的電能分配模式。隨著電力行業科技快速發展,縣級電力公司要靈活應用繼電保護技術作為防護,為電氣工程自動化改造做好前期工作,維持電氣設備工作狀態的穩定性。現階段,基于繼電保護系統可組建智能保護、實時仿真、安全告警等多項保護模式,具體情況:
4.1智能保護系統
智能保護是電氣工程調控新技術,借助智能系統取代人工操作,不僅保護了電力系統運行狀態,對人員及設備也起到了安全防護作用。例如,電氣工程中配備繼電保護器與電子感應技術聯用,當電氣系統出現異常故障之后,第一時間發出告警信號,提醒檢修人員趕往現場處理,防治故障擴大化產生的異常危害。
4.2實時仿真系統
仿真技術是對繼電保護系統的模擬運行,尤其在新安裝的電力系統中,借助仿真模擬平臺可預測系統運行狀態,正式啟動前做好對應的防護措施。實時仿真由動態保護技術構成,在電氣設備安裝結束后執行命令。技術人員分析仿真結果,總結電力系統運行存在的漏洞,擬定針對性的保護處理方案。
4.3安全告警系統
安全告警也是電氣系統防護的有效方式,采用多種保護技術維持電力系統的穩定性,利用安全防護層執行監控命令,發現系統連接設備出現故障時,立即啟動告警程序。同時,對電氣設備執行一級防護,確保設備在故障狀態下不會二次受損,為后期檢修工作爭取了更多的時間,這也是繼電保護技術多功能應用的表現。
一、繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術,建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上,結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用,天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究,高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
二、繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
2.1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。
南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。
電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。
2.2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理,初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。
2.3保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
2.4智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
三、結束語
一、繼電保護發展現狀
電力系統的飛速發展對繼電保護不斷提出新的要求,電子技術、計算機技術與通信技術的飛速發展又為繼電保護技術的發展不斷地注入了新的活力,因此,繼電保護技術得天獨厚,在40余年的時間里完成了發展的4個歷史階段。
建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術[1],建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
自50年代末,晶體管繼電保護已在開始研究。60年代中到80年代中是晶體管繼電保護蓬勃發展和廣泛采用的時代。其中天津大學與南京電力自動化設備廠合作研究的500kV晶體管方向高頻保護和南京電力自動化研究院研制的晶體管高頻閉鎖距離保護,運行于葛洲壩500kV線路上[2],結束了500kV線路保護完全依靠從國外進口的時代。
在此期間,從70年代中,基于集成運算放大器的集成電路保護已開始研究。到80年代末集成電路保護已形成完整系列,逐漸取代晶體管保護。到90年代初集成電路保護的研制、生產、應用仍處于主導地位,這是集成電路保護時代。在這方面南京電力自動化研究院研制的集成電路工頻變化量方向高頻保護起了重要作用[3],天津大學與南京電力自動化設備廠合作研制的集成電路相電壓補償式方向高頻保護也在多條220kV和500kV線路上運行。
我國從70年代末即已開始了計算機繼電保護的研究[4],高等院校和科研院所起著先導的作用。華中理工大學、東南大學、華北電力學院、西安交通大學、天津大學、上海交通大學、重慶大學和南京電力自動化研究院都相繼研制了不同原理、不同型式的微機保護裝置。1984年原華北電力學院研制的輸電線路微機保護裝置首先通過鑒定,并在系統中獲得應用[5],揭開了我國繼電保護發展史上新的一頁,為微機保護的推廣開辟了道路。在主設備保護方面,東南大學和華中理工大學研制的發電機失磁保護、發電機保護和發電機?變壓器組保護也相繼于1989、1994年通過鑒定,投入運行。南京電力自動化研究院研制的微機線路保護裝置也于1991年通過鑒定。天津大學與南京電力自動化設備廠合作研制的微機相電壓補償式方向高頻保護,西安交通大學與許昌繼電器廠合作研制的正序故障分量方向高頻保護也相繼于1993、1996年通過鑒定。至此,不同原理、不同機型的微機線路和主設備保護各具特色,為電力系統提供了一批新一代性能優良、功能齊全、工作可靠的繼電保護裝置。隨著微機保護裝置的研究,在微機保護軟件、算法等方面也取得了很多理論成果。可以說從90年代開始我國繼電保護技術已進入了微機保護的時代。
二、繼電保護的未來發展
繼電保護技術未來趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
1計算機化
隨著計算機硬件的迅猛發展,微機保護硬件也在不斷發展。原華北電力學院研制的微機線路保護硬件已經歷了3個發展階段:從8位單CPU結構的微機保護問世,不到5年時間就發展到多CPU結構,后又發展到總線不出模塊的大模塊結構,性能大大提高,得到了廣泛應用。華中理工大學研制的微機保護也是從8位CPU,發展到以工控機核心部分為基礎的32位微機保護。
南京電力自動化研究院一開始就研制了16位CPU為基礎的微機線路保護,已得到大面積推廣,目前也在研究32位保護硬件系統。東南大學研制的微機主設備保護的硬件也經過了多次改進和提高。天津大學一開始即研制以16位多CPU為基礎的微機線路保護,1988年即開始研究以32位數字信號處理器(DSP)為基礎的保護、控制、測量一體化微機裝置,目前已與珠海晉電自動化設備公司合作研制成一種功能齊全的32位大模塊,一個模塊就是一個小型計算機。采用32位微機芯片并非只著眼于精度,因為精度受A/D轉換器分辨率的限制,超過16位時在轉換速度和成本方面都是難以接受的;更重要的是32位微機芯片具有很高的集成度,很高的工作頻率和計算速度,很大的尋址空間,豐富的指令系統和較多的輸入輸出口。CPU的寄存器、數據總線、地址總線都是32位的,具有存儲器管理功能、存儲器保護功能和任務轉換功能,并將高速緩存(Cache)和浮點數部件都集成在CPU內。
電力系統對微機保護的要求不斷提高,除了保護的基本功能外,還應具有大容量故障信息和數據的長期存放空間,快速的數據處理功能,強大的通信能力,與其它保護、控制裝置和調度聯網以共享全系統數據、信息和網絡資源的能力,高級語言編程等。這就要求微機保護裝置具有相當于一臺PC機的功能。在計算機保護發展初期,曾設想過用一臺小型計算機作成繼電保護裝置。由于當時小型機體積大、成本高、可靠性差,這個設想是不現實的。現在,同微機保護裝置大小相似的工控機的功能、速度、存儲容量大大超過了當年的小型機,因此,用成套工控機作成繼電保護的時機已經成熟,這將是微機保護的發展方向之一。天津大學已研制成用同微機保護裝置結構完全相同的一種工控機加以改造作成的繼電保護裝置。這種裝置的優點有:(1)具有486PC機的全部功能,能滿足對當前和未來微機保護的各種功能要求。(2)尺寸和結構與目前的微機保護裝置相似,工藝精良、防震、防過熱、防電磁干擾能力強,可運行于非常惡劣的工作環境,成本可接受。(3)采用STD總線或PC總線,硬件模塊化,對于不同的保護可任意選用不同模塊,配置靈活、容易擴展。
繼電保護裝置的微機化、計算機化是不可逆轉的發展趨勢。但對如何更好地滿足電力系統要求,如何進一步提高繼電保護的可靠性,如何取得更大的經濟效益和社會效益,尚須進行具體深入的研究。
2網絡化
計算機網絡作為信息和數據通信工具已成為信息時代的技術支柱,使人類生產和社會生活的面貌發生了根本變化。它深刻影響著各個工業領域,也為各個工業領域提供了強有力的通信手段。到目前為止,除了差動保護和縱聯保護外,所有繼電保護裝置都只能反應保護安裝處的電氣量。繼電保護的作用也只限于切除故障元件,縮小事故影響范圍。這主要是由于缺乏強有力的數據通信手段。國外早已提出過系統保護的概念,這在當時主要指安全自動裝置。因繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,確保系統的安全穩定運行。顯然,實現這種系統保護的基本條件是將全系統各主要設備的保護裝置用計算機網絡聯接起來,亦即實現微機保護裝置的網絡化。這在當前的技術條件下是完全可能的。
對于一般的非系統保護,實現保護裝置的計算機聯網也有很大的好處。繼電保護裝置能夠得到的系統故障信息愈多,則對故障性質、故障位置的判斷和故障距離的檢測愈準確。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
對于某些保護裝置實現計算機聯網,也能提高保護的可靠性。天津大學1993年針對未來三峽水電站500kV超高壓多回路母線提出了一種分布式母線保護的原理[6],初步研制成功了這種裝置。其原理是將傳統的集中式母線保護分散成若干個(與被保護母線的回路數相同)母線保護單元,分散裝設在各回路保護屏上,各保護單元用計算機網絡聯接起來,每個保護單元只輸入本回路的電流量,將其轉換成數字量后,通過計算機網絡傳送給其它所有回路的保護單元,各保護單元根據本回路的電流量和從計算機網絡上獲得的其它所有回路的電流量,進行母線差動保護的計算,如果計算結果證明是母線內部故障則只跳開本回路斷路器,將故障的母線隔離。在母線區外故障時,各保護單元都計算為外部故障均不動作。這種用計算機網絡實現的分布式母線保護原理,比傳統的集中式母線保護原理有較高的可靠性。因為如果一個保護單元受到干擾或計算錯誤而誤動時,只能錯誤地跳開本回路,不會造成使母線整個被切除的惡性事故,這對于象三峽電站具有超高壓母線的系統樞紐非常重要。
由上述可知,微機保護裝置網絡化可大大提高保護性能和可靠性,這是微機保護發展的必然趨勢。
3保護、控制、測量、數據通信一體化
在實現繼電保護的計算機化和網絡化的條件下,保護裝置實際上就是一臺高性能、多功能的計算機,是整個電力系統計算機網絡上的一個智能終端。它可從網上獲取電力系統運行和故障的任何信息和數據,也可將它所獲得的被保護元件的任何信息和數據傳送給網絡控制中心或任一終端。因此,每個微機保護裝置不但可完成繼電保護功能,而且在無故障正常運行情況下還可完成測量、控制、數據通信功能,亦即實現保護、控制、測量、數據通信一體化。
目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾。現在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
4智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始[7]。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。天津大學從1996年起進行神經網絡式繼電保護的研究,已取得初步成果[8]。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
三、結束語
建國以來,我國電力系統繼電保護技術經歷了4個時代。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。國內外繼電保護技術發展的趨勢為:計算機化,網絡化,保護、控制、測量、數據通信一體化和人工智能化,這對繼電保護工作者提出了艱巨的任務,也開辟了活動的廣闊天地。
參考文獻
1王梅義.高壓電網繼電保護運行技術.北京:電力工業出版社,1981
2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)
3沈國榮.工頻變化量方向繼電器原理的研究.電力系統自動化,1983(1)
4葛耀中.數字計算機在繼電保護中的應用.繼電器,1978(3)
5楊奇遜.微型機繼電保護基礎.北京:水利電力出版社,1988
2工作原理。在變電站繼電保護系統中信息管理技術一般包括兩方面,即軟件部分與硬件部分。軟件是由計算機所執行的各種程序,通過對輸入的各種數據進行邏輯判斷與運算處理,從而保證各電路系統可以高效運行;而硬件部分則主要是由以下幾項組成:CPU主機系統、開關量輸入輸出、模擬量數據、通訊回路以及電源回路等。電壓是衡量電能質量的一項重要指標,,當電壓不穩定而且超出一定的數值時,將對電力系統造成損害并對國民的經濟造成嚴重的損失,對于電網系統中的發電機、變壓器等重要設備導致其容量嚴重減少;對于電動機則會由于電壓過低、電流過大致使自身溫度升高最終自燃燒毀。
二、信息管理技術在繼電保護系統中的應用
1繼電保護技術中圖紙的信息技術管理。圖紙管理在繼電保護系統中起到非常關鍵的作用,由于繼電保護的圖紙管理還是沿用傳統方法,主要還是人工進行管理或是通過手工繪圖,并且在繪圖過程中繪圖人員的作圖方式各有所異,此外圖紙儲存方式也有所不同,為了更好地進行管理,統一的圖紙格式變得很有必要。繼電保護系統中信息管理的圖形文件一般只有兩種:一種是位圖文件,這類文件主要利用點陣的形式進行對圖形描繪的一種軟件;另一種是矢量類文件,它主要是通過數學方法進行對幾何元素的描述,最終形象比較逼真、細致的圖像,并將圖紙借此進行轉化,然后變成矢量圖文件,在現實操作中,矢量化的圖紙繪制這一種方法是非常有效的。
2繼電保護技術中數據庫的信息技術管理。在繼電保護中所用到的圖紙是非常專業的一種圖紙,其種類也比較多,因此,如果不對其進行分類與整理將會變得混亂,因此需要根據數據結構去建立數據庫。對于數據庫中的所有元件一般會兩層表的結構設計,這兩層包括參數表和基本屬性表,參數表指的是各個元件的參數類型,而基本屬性表一般包括元件坐標以及圖紙名等,并通過ID作為基本屬性表的參數來進行對圖紙的分析、整理,同時對進行圖元的分類,最終才達能數據庫建立的目的。
3繼電保護技術中技術資料的信息技術管理。在繼電保護中對技術資料的管理指的是通過對掃描的圖片、電子文檔等的資料的分類管理,從而形成的一種較為有效資源管理的模式。其中所涉及到的技術主要這幾種:定值管理,通過使用保護定值代碼對各種模板進行定制;班組信息管理,這在繼電保護中開展的日常管理工作時對圖表的創建與修改,進一步對資料管理的完善;數字簽名,在進行文檔的存檔過程中,對用戶實行電子身份認證;網頁瀏覽,這是在繼電保護技術中對常用的表格加以掃描,同時通過客戶端對網頁進行瀏覽,對技術資料進行上傳。
三、繼電保護中對信息數據庫的完善
變電站運行的基礎信息是變電站中改進各項技術和對技術進行更新的關鍵,并且對變電站進行新技術的應用與進行經驗總結有著密切的聯系。在變電站繼電保護系統中進行信息管理技術的應用,要進行對繼電保護中信息數據庫的完善。以基礎信息數據庫作為基礎,對于變電站繼電保護中其正常運行、發生的故障等信息,一并歸到信息數據庫中去。在通過對運行信息的收集以及對數據庫進行整理保存,為日后的工作打下基礎。將繼電保護系統中的故障和零部件壽命等信息歸入到數據庫中,為日后的檢修工作提供依據,以及為預防性檢修理論運用打下基礎。信息數據庫的建立還可以為現代變電站繼電保護工作進一步的發展提供基礎信息、為平時的繼電保護檢修工作提供有用的資料。