時間:2023-03-20 16:06:59
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇數學建模論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
全國大學生數學建模競賽問題涉及面廣,不僅對學生數學知識要求高,對學生綜合能力方面要求更高。通過比賽的方式,可以有效地檢驗一個學校學生綜合素質能力及創新能力等方面是否過硬,從而可以側面反映出該學校教學過程中存在哪些問題,對學校教學方面改革發展具有重要作用。從2004年開始,我院積極組織號召學生參加全國大學生數學建模競賽,該項賽事組織以來,在我院得到快速發展,并且取得了驕人的成績,其中獲得國家獎項6項,省級獎項70余項,培養了許多創新能力、應用能力強的優秀畢業生。學生各方面能力提升的同時,更重要的一點,這對于我院數學教學方面改革指明方向,教學中如何有效促進數學教學。數學建模競賽作為一個學習交流平臺,對培養學生數學知識運用及創新方面起到很好的作用,而將建?;顒迂灤┯谡麄€數學教學過程中,無形中提升學生綜合能力,十分符合我院實行項目化教學的要求,也符合社會上用人單位對學生基本能力的要求。通過對我院參加建模競賽活動學生調查問卷追蹤并進行訪談得出,82%的學生認為,通過建?;顒?,自身綜合能力得到極大地提高,工作后查閱資料等方面學習能力進一步提升;14%的學生認為一般,并不是說數學建模不好,主要在于自己學習能力弱,壓根不想學新知識,有份工作就好;4%的學生表示不關心,沒興趣,工作中很難遇到相關數學問題。根據調查結果及數學建模指導教師長期經驗,本文得出一些結論值得肯定:(1)數學建模競賽及活動有利于學生數學應用意識及能力的提高;(2)數學建模競賽及活動有利于學生以后小組合作能力及交往能力的提高;(3)數學建模競賽及活動有利于學生探索、創新能力的提高;(4)數學建模競賽及活動有利于學生自身自學能力的提高。
二、開展課堂有效數學建模活動,提高學生綜合能力策略
(一)課堂教學采取建模競賽活動方式使學生
學習觀念轉變,提升興趣高等職業學校學生數學基礎明顯欠缺,且高等數學課程體系已成,傳統的圍繞定義、定理、公式等理論填鴨式教學方式已不再適合學生學習,即使學生被認為掌握了非常重要的數學知識,卻難以在實際生活中應用或根本不會應用,導致學習興趣降低或毫無興趣。課堂開展數學建?;顒?,則可以為數學和實際問題架起一座橋梁,通過該活動,可以促進學生想方設法將實際問題歸納、整理并轉化成數學問題,并加以解決,這樣學生也感到有成功感。讓學生學會知識的同時,更感受到數學真的有用,無處不在。因而,利用數學建?;顒咏虒W方式,激發學生興趣是很有必要的。
(二)數學建模活動可以促進學生創造力培養
全國大學生數學建模競賽題目多是從工程技術、農業、管理等方面遇到的實際問題提煉而成,而建立模型求解的過程就是對這些問題進行合理解決。針對實際問題從分析開始,到建立模型、求解模型及最后對結果分析,這一系列過程沒有固定的方法可用,也沒有相同模式遵循,求解過程主要依賴學生知識掌握的功底及充滿想象力的思路和方法,這就要求學生必須具有良好的獨立思考的能力,極大地發揮自己創造力的能力。所以,教師在實際的教學過程中,利用數學建模競賽活動教學方式對學生創造力培養具有很好的效果。不斷地重復引導學生分析問題、收集資料、建立模型,逐步使學生學會用所學數學知識有針對性地、創造性地解決問題,這樣,既拓展學生視野,又能促進學生創造力的培養。
(三)數學建?;顒涌梢源龠M學生自學能力
既然大學生數學建模題目從工學、農學、社會科學等實際問題提煉而成,那么學生要想真正意義上解決一個實際問題,就必須了解掌握該問題的相關背景,進而必須查閱行業相關資料,自學并掌握行業相關方面知識,這樣才可以做到游刃有余。這一過程,學生不知不覺中自學能力得到較大提高,其綜合能力潛移默化中得到增強,因此,數學建?;顒咏虒W方式對學生自學能力培養很有必要。
(四)數學建?;顒涌梢源龠M學生之間互相合作
二數學建模對培養學生就業能力的作用
筆者在指導學生參加全國大學生數學建模競賽的過程中,體會到數學建模活動對高職院校的學生的綜合素質和就業能力的提升起著十分重要的作用,有利于高職教育人才培養目標的實現。
1提升學生自主學習的能力
數學建模競賽賽題所涉及的知識面較廣,甚至有許多是學生未曾涉及過的領域(如,2012年賽題中的C題:“腦卒中發病環境因素分析及干預”與醫學領域有關),學生僅憑已有的知識是難以甚至不能完成競賽,這就要求學生不僅需要復習好已經學過的知識,還必須積極、主動去學習新知識,擴大知識面,如,數學軟件的使用、論文寫作方法、不包括在高職人才培養方案中的一些數學內容(如數值計算等)、查找相關文獻資料并從大量文獻中吸取所需知識的技巧等知識,學生都須通過自主學習的途徑來掌握。這個過程有助于學生自主學習能力的提升。
2提升學生運用知識解決問題的能力
數學建模是一個將錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。在建模過程中,就是要針對生產或生活中的實際問題,通過觀察和研究實際對象的固有特征和內在規律,抓住問題的主要矛盾,結合數學及其他專業知識的理論和方法去分析、建立起反映實際問題的數量關系。這個過程就是運用所學的數學知識和其他專業知識的過程。數學建模競賽題涉及的數據量往往大且復雜,求解、運算過程十分繁瑣,手工計算很難甚至無法得到結果,需要使用計算機來輔助解決問題,例如,常使用MATLAB等數學軟件進行模型初建、模型合理性分析、模型改進等;使用SPSS等數理統計類軟件,完成數據處理、圖形變換和問題求解等工作,這是個運用計算機知識的過程??梢姡瑪祵W建模能培養學生運用數學及其他專業知識、計算機知識等解決實際問題的能力,有利于拓寬學生的就業技能。
3提升學生分析問題和創造性解決問題的能力
培養創新能力數學建模賽題來自于實際問題之中,有極強的實際應用背景,而對競賽選手完成的答卷(論文)的評價一般沒有標準答案,評價時主要是看對問題所做假設的合理性、建模的創造性、結論的正確性和文字表述的清晰程度,評審者更青睞有獨特創意的論文。這就要求參賽學生充分發揮想像力、創造力,在通過分析、討論,迅速洞察問題的實質和特征之后,做出合理的假設,并綜合運用數學知識和其他相關知識,創造性地確定或建立數學模型??梢?,數學建模過程是個提升學生的分析問題能力,創造性解決問題的能力的過程,具有培養學生創新能力的作用。
4提升學生的團結協作能力
數學建模競賽不同于一般競賽,單獨一個隊員是無法完成競賽的,必須通過團隊三隊員共同的努力,才能在72個小時內完成論文,交上答卷。這要求在競賽的過程中,需要根據隊員的特點,進行分工合作,發揮各自的長處,發揮團隊的整體綜合實力。在團隊中,由有較強組織協調能力的隊員來負責協調三人的關系,安排工作流程和工作任務;由有較強寫作能力的隊員來保證寫出較流暢的論文;由有較強計算機應用能力的隊員來使用數學軟件,負責建立、檢驗數學模型;競賽過程中,隊員間必須精誠團結、相互配合、集體攻關,才能在競賽中取勝。因此,數學建模競賽過程是個提升學生團結協作能力、培養學生的團隊精神的過程,這對培養學生適應社會的能力起到積極的作用。
關鍵詞:認知心理學;思想;數學建模;認知結構;學習觀
認知心理學(CognitivePsychology)興起于20世紀60年代,是以信息加工理論為核心,研究人的心智活動為機制的心理學,又被稱為信息加工心理學。它是認知科學和心理學的一個重要分支,它對一切認知或認知過程進行研究,包括感知覺、注意、記憶、思維和言語等[1]。當代認知心理學主要用來探究新知識的識記、保持、再認或再現的信息加工過程中關于學習的認識觀。而這一認識觀在學習中體現較突出的即為數學建模,它是通過信息加工理論對現實問題運用數學思想加以簡化和假設而得到的數學結構。本文通過構建數學模型將“認知心理學”的思想融入現實問題的處理,結合教學案例,并提出建立良好數學認知結構以及數學學習觀的原則和方法,進一步證實認知心理學思想在數學建模中的重要性。
一、案例分析
2011年微軟公司在招聘畢業大學生時,給面試人員出了這樣一道題:假如有800個形狀、大小相同的球,其中有一個球比其他球重,給你一個天平,請問你可以至少用幾次就可以保證找出這個較重的球?面試者中不乏名牌大學的本科、碩士甚至博士,可竟無一人能在有限的時間內回答上來。其實,后來他們知道這只是一道小學六年級“找次品”題目的變形。
(一)問題轉化,認知策略
我們知道,要從800個球中找到較重的一個球這一問題如果直接運用推理思想應該會很困難,如果我們運用“使復雜問題簡單化”這一認知策略,問題就會變得具體可行。于是,提出如下分解問題。問題1.對3個球進行實驗操作[2]。問題2.對5個球進行實驗操作。問題3.對9個球進行實驗操作。問題4.對4、6、7、8個球進行實驗操作。問題5.如何得到最佳分配方法。
(二)模型分析,優化策略
通過問題1和問題2,我們知道從3個球和5個球中找次品,最少并且保證找到次品的分配方法是將球分成3份。但這一結論只是我們對實驗操作的感知策略。為了尋找策略,我們設計了問題3,對于9個球的最佳分配方法也是分為3份。因此我們得到結論:在“找次品”過程中,結合天平每次只能比較2份這一特點,重球只可能在天平一端或者第3份中,同時,為了保證最少找到,9個球均分3份是最好的方法。能被3除盡的球我們得到均分這一優化策略,對于不能均分的球怎么分配?于是我們設計了問題4,通過問題4我們得到結論:找次品時,盡量均分為3份,若不能均分要求每份盡量一樣,可以多1個或少1個。通過問題解決,我們建立新的認知結構:2~3個球,1次;3+1~32個球,2次;32+1~33個球,3次;……
(三)模型轉化,歸納策略
通過將新的認知結構運用到生活實踐,我們知道800在36~37之間,所以我們得到800個球若要保證最少分配次數是7次。在認知心理學中,信息的具體表征和加工過程即為編碼。編碼并不被人們所覺察,它往往以“刺激”的形式表現為知覺以及思想。在信息加工過程中,固有的知識經驗、嚴密的邏輯思維能力以及抽象概況能力將為數學建模中能力的提高產生重要的意義。
二、數學建模中認知心理學思想融入
知識結構和認知結構是認知心理學的兩個基本概念[3]。數學是人類在認識社會實踐中積累的經驗成果,它起源于現實生活,以數字化的形式呈現并用來解決現實問題。它要求人們具有嚴密的邏輯思維以及空間思維能力,并通過感知、記憶、理解數形關系的過程中形成一種認知模型或者思維模式。這種認知模型通常以“圖式”的形式存在于客體的頭腦,并且可以根據需要隨時提取支配。
(一)我國數學建模的現狀
《課程標準(2011年版)》將模型思想這一核心概念的引入成為數學學習的主要方向。其實,數學建模方面的文章最早出自1982年張景中教授論文“洗衣服的數學”以及“壘磚問題”。雖然數學建模思想遍布國內外,但是真正將數學建模融入教學,從生活事件中抽取數學素材卻很難。數學建模思想注重知識應用,通過提取已有“圖式”加工信息形成新的認知結構的方式內化形成客體自身的“事物結構”,其不僅具有解釋、判斷、預見功能,而且能夠提高學生學習數學的興趣和應用意識[4]。
(二)結合認知心理學思想,如何形成有效的數學認知結構
知識結構與智力活動相結合,形成有效認知結構。我們知道,數學的知識結構是前人在總結的基礎上,通過教學大綱、教材的形式呈現,并通過語言、數字、符號等形式詳細記述的。學生在學習時,通過將教材中的知識簡約化為特定的語言文字符號的過程叫作客體的認知結構,這一過程中,智力活動起了重要作用。復雜的知識結構體系、內心體驗以及有限的信息加工容量讓我們不得不針對內外部的有效信息進行篩選。這一過程中,“注意”起到重要作用,我們在進行信息加工時,只有將知識結構與智力活動相結合,增加“有意注意”和“有意后注意”,才能夠形成有效的數學認知結構。根據不同構造方式,形成有利認知結構。數學的知識結構遵循循序漸進規律,并具有嚴密的邏輯性和準確性,它是形成不同認知結構的基礎。學生頭腦中的認知結構則是通過積累和加工而來,即使數學的知識結構一樣,不同的人仍然會形成不同的認知結構。這一特點取決于客體的智力水平、學習能力。因此若要形成有利認知結構,必須遵循知識發展一般規律,注重知識的連貫性和順序性,考慮知識的積累,注重邏輯思維能力的提高。
三、認知心理學思想下的數學學習觀
學習是學習者已知的、所碰到的信息和他們在學習時所做的之間相互作用的結果[5]。如何將數學知識變為個體的知識,從認知心理學角度分析,即如何將數學的認知結構吸收為個體的認知結構,即建立良好的數學學習觀,這一課題成為許多研究者關注的對象。那么怎樣學習才能夠提高解決數學問題的能力?或者怎樣才能構建有效的數學模型,接下來我們將根據認知心理學知識,提出數學學習觀的構建原則和方法。
(一)良好數學學習觀應該是“雙向產生式”的信息
加工過程學習是新舊知識相互作用的結果,是人們在信息加工過程中,通過提取已有“圖式”將新輸入的信息與頭腦中已存儲的信息進行有效聯系而形成新的認知結構的過程[6]??墒?,當客體對于已有“圖式”不知如何使用,或者當遇到可以利用“圖式”去解決的問題時不知道去提取相應的知識,學習過程便變得僵化、不知變通。譬如,案例中,即使大部分學生都學習了“找次品”這部分內容,卻只能用來解決比較明確的教材性問題,對于實際生活問題卻很難解決。學習應該是“雙向產生式”的信息加工過程,數學的靈活性在這方面得到了較好的體現。學習時應遵循有效記憶策略,將所學知識與該知識有聯系的其他知識結合記憶,形成“流動”的知識結構。例如在案例中,求800個球中較重球的最少次數,可以先從簡單問題出發,對3個球和5個球進行分析,猜測并驗證出一般分配方法。這一過程需要有效提取已有知識經驗,通過擬合構造,不僅可以提高學生學習興趣,而且能夠增強知識認識水平和思維能力。
(二)良好數學學習觀應該具有層次化、條理化的認知結構
如果頭腦中僅有“雙向產生式”的認知結構,當遇到問題時,很難快速找到解決問題的有效條件。頭腦中數以萬計“知識組塊”必須形成一個系統,一個可以大大提高檢索、提取效率的層次結構網絡。如案例,在尋找最佳分配方案時,我們可以把8個球中找次品的所有分配情況都羅列出來。這樣做,打破了“定勢”的限制,而以最少稱量次數為線索來重新構造知識,有助于提高學生發散思維水平,使知識結構更加具有層次化、條理化。在學習過程中,隨著頭腦中信息量的增多,層次結構網絡也會越來越復雜。因此,必須加強記憶的有效保持,鞏固抽象知識與具體知識之間的聯系,能夠使思維在抽象和現實之間靈活轉化。而這一過程的優化策略是有效練習。
(三)良好數學學習觀應該具有有效的思維策略
要想形成有效的數學學習觀,提高解決實際問題的能力,頭腦中還必須要形成有層次的思維策略,以便大腦在學習和信息加工過程中,策略性思維能夠有效加以引導和把控。通過調節高層策略知識與底層描述性及程序性知識之間的轉換,不斷反思頭腦思維策略是否恰當進而做出調整和優化。譬如,在案例中,思維經過轉化策略、尋找策略、優化策略、歸納總結四個過程,由一般特殊一般問題的求解也是思維由高層向底層再向高層轉換的層次性的體現。
高等職業教育作為教育類型得到了空前發展.高職教育在于培養適應生產、建設、管理、服務第一線需要的高素質技能型人才不僅成為人們的一種共識,而且逐步滲透到高職院校的辦學實踐中.數學課程作為一門公共基礎課程如何服務于這個目標成為高職基礎課程改革中的熱點.將數學建模思想融入高職數學教學應是一個重要取向之一.
一、數學建模競賽對大學生能力培養的重要性
大學生數學建模競賽起源于美國,我國從1989年開始開展大學生數模競賽,1994年這項競賽被教育部列為全國大學生四大競賽之一,每年都有幾百所大學積極參加.數學建模競賽與以往主要考察知識和技巧的數學競賽不同,是一個完全開放式的競賽.數學建模競賽的主要目的在于“激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵學生踴躍參加課外科技等活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革”.數學建模競賽的題目沒有固定的范圍和模式,往往是由實際問題稍加修改和簡化而成,不要求參賽者預先掌握深入的專門知識.題目有較大的靈活性供參賽者發揮其創造性,參賽者從所給的兩個題目中任選一個,可以翻閱一切可利用的資料,可以使用計算機及其各種軟件.競賽持續3天3夜,參賽者可以在此期間充分地發揮自己的各種能力.數學建模競賽也是一個合作式的競賽,學生以小組形式參加比賽,每組3人,共同討論,分工協作,最后完成一份答卷論文.數學建模涉及的知識幾乎涵蓋了整個自然科學領域甚至涉及到社會科學領域.而且愈來愈多的人認識到學科交叉的結合點正是數學建模.數學建模競賽是能夠把數學和數學以外學科聯系的方法.通過競賽把學生學過的知識與周圍的現實世界聯系起來,培養了學生的下列能力:
(一)有利于大學生創新性思維的培養
高等教育的重要目的是培養國家建設需要的中高層次人才,而許多教育工作者認識到目前的高等學校教學中還存在著許多缺陷,其中一個重要的問題是培養的學生缺乏創造性的思維,缺乏一種原創性的想象力.這是我國高等教育的一個致命弱點,嚴重制約了我國科技競爭力.我國高等學校的教學還是以灌輸知識為主,這種教育體制嚴重扼殺了學生的能動性和創造性.數學建模競賽并不要求求解結果的唯一性和完美性,而是重點要求學生怎樣根據實際問題建立數學關系,并給出合乎實際要求的結果和方案,重點考察的是學生的創造性思維能力.
(二)有利于學生動手實踐能力的培養
目前的數學教學中,大多是教師給出題目,學生給出計算結果.問題的實際背景是什么?結果怎樣應用?這些問題都不是現行的數學教學能夠解決的.
數學模型是一個完整的求解過程,要求學生根據實際問題,抽象和提煉出數學模型,選擇合適的求解算法,并通過計算機程序求出結果.在這個過程中,模型類型和算法選擇都需要學生自己作決定,建立模型可能要花50%的精力,計算機的求解可能要花30%的精力.動手實踐能力有助于學生畢業后快速完成角色的轉變.
(三)有利于學生知識結構的完善
一個實際數學模型的構建涉及許多方面的問題,問題本身可能涉及工程問題、環境問題、生殖健康問題、生物競爭問題、軍事問題、社會問題等等,就所用工具來講,需要計算機信息處理、Internet網、計算機信息檢索等.因此數學建模競賽有利于促進學生知識交叉、文理結合,有利于促進復合型人才的培養.另外數學建模競賽還要求學生具有很強的計算機應用能力和英文寫作能力.
(四)有利于學生團隊精神的培養
學生畢業后,無論從事創業工作還是研究工作,都需要合作精神和團隊精神.數學建模競賽要求學生以團隊形式參加,3個人為一組,共同工作3天.在競賽的過程中3位同學充分的分工與合作,最后完成問題的解決.集體工作,共同創新,榮譽共享,這些都有利于培養學生的團隊精神,培養學生將來協同創業的意識.任何一個參加過數學建模競賽的學生都對團隊精神帶來的成功和喜悅感到由衷的鼓舞.
二、將數學建模思想融入高職數學教學中
通過數學建模,給我們的教學模式提出了更多的思考,使我們不得不回過頭重新審視一下我們的教學模式是否符合現代教學策略的構建?現代的教學策略追求的目標是提倡學生主動參與、樂于探究、勤于動手,培養學生搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力.只有遵循現代的教學策略才能培養出適應新世紀、新形勢下的高素質復合型人才.知識的獲取是一個特殊的認識過程,本質上是一個創造性過程.知識的學習不僅是目的,而且是手段,是認識科學本質、訓練思維能力、掌握學習方法的手段,在教學中應該強調的是發現知識的過程,而不是簡單地獲得結果,強調的是創造性解決問題的方法和養成不斷探索的精神.在學習、接受知識時要像前人創造知識那樣去思考,去再發現問題,在解決問題的各種學習實踐活動中盡量提出有新意的見解和方法,在積累知識的同時注意培養和發展創新能力.數學建模恰恰能滿足這種獲取知識的需求,是培養學生綜合能力的一個極好的載體,更是建立現代教學模式的一種行之有效的方法.因此,在數學教學中應該融入數學建模思想.如何將數學建模思想融入數學課程中,我認為要合理嵌入,即以科學技術中數學應用為中心,精選典型案例,在數學教學中適時引入,難易適中.以為要抓好以下幾個關鍵點:
(一)在教學中滲透數學建模思想
滲透數學建模思想的最大特點是聯系實際.高職人才培養的是應用技術型人才,對其數學教學以應用為目的,體現“聯系實際、深化概念、注重應用”的思想,不應過多強調灌輸其邏輯的嚴密性,思維的嚴謹性.學數學主要是為了用來解決工作中出現的具體問題.
而高職教材中的問題都是現實中存在又必須解決的問題,正是數學建模案例的最佳選擇.因此,作為數學選材并不難,只要我們深入鉆研教材,挖掘教材所蘊涵應用數學的材料,從中加以推廣,結合不同專業選編合適的實際問題,創設實際問題的情境,讓學生能體會到數學在解決問題時的實際應用價值,激發學生的求知欲,同時在實際問題解決的過程中能很好的掌握知識,培養學生靈活運用和解決問題、分析問題的能力.數學教學中所涉及到的一些重要概念要重視它們的引入,要設計它們的引入,其中以合適的案例來引入概念、演示方法是將數學建模思想融入數學教學的重要形式.這樣在傳授數學知識的同時,使學生學會數學的思想方法,領會數學的精神實質,知道數學的來龍去脈,使學生了解到他們現在所學的那些看來枯燥無味但又似乎天經地義的概念、定理和公式,并不是無本之木、無源之水,也不是人們頭腦中所固有的,而是有現實的來源與背景,有其物理原型和表現的.在教學實踐中,我們依據現有成熟的專業教材,選出具有典型數學概念的應用案例,然后按照數學建模過程規律修改和加工之后作為課堂上的引例或者數學知識的實際應用例題.這樣使學生既能親切感受到數學應用的廣泛,也能培養學生用數學解決問題的能力.總之,在高職數學教學中滲透數學建模思想,等于教給學生一種好的思想方法,更是給學生一把開啟成功大門的鑰匙,為學生架起了一座從數學知識到實際問題的橋梁,使學生能靈活地根據實際問題構建合理的數學模型,得心應手地解決問題.但這也對數學教師的要求就更高,教師要盡可能地了解高職專業課的內容,搜集現實問題與熱點問題等等.
(二)在課程教學及考核中適度引入數學建模問題
實踐表明,真正學會數學的方法是用數學,為此不僅要讓學生知道數學有用,還要鼓勵他們自己用數學去解決實際問題.同時越來越多的人認識到,數學建模是培養創新能力的一個極好載體,而且能充分考驗學生的洞察能力、創造能力、數學語言翻譯能力、文字表達能力、綜合應用分析能力、聯想能力、使用當代科技最新成果的能力;學生們同舟共濟的團隊精神和協調組織能力,以及誠信意識和自律精神.在教學實踐中,在數學課程的考核中增加數學建模問題,并施以“額外加分”的鼓勵辦法,在平常的作業中除了留一些鞏固課堂數學知識的題目外,還要增加需要用數學解決的實際應用題.這些應用題可以獨立或自由組合成小組去完成,完成的好則在原有平時成績的基礎上獲得“額外加分”.這種作法,鼓勵了學生應用數學,提高了邏輯思維能力,培養了認真細致、一絲不茍、精益求精的風格,提高了運用數學知識處理現實世界中各種復雜問題的意識、信念和能力,調動了學生的探索精神和創造力,團結協作精神,從而獲得除數學知識本身以外的素質與能力.
(三)、適時開設《數學建模和實驗》課
數學建模競賽之所以在世界范圍內廣泛發展,是與計算機的發展密不可分的,許多數學模型中有大量的計算問題,沒有計算機的情況下這些問題的實時求解是不可能的。隨著計算機技術的不斷發展,數學的思想和方法與計算機的結合使數學從某種意義上說已經成為了一門技術.為使學生熟悉這門技術,應當增設《數學建模和實驗》課,主要以專題講座的形式向同學們介紹一些成功的數學建模實例以及如何使用數學軟件來求解數學問題等等.與數學建模有密切關系的數學模擬,主要是運用數字式計算機的計算機模擬.它根據實際系統或過程的特性,按照一定的數學規律,用計算機程序語言模擬實際運行狀況,并根據大量模擬結果對系統和過程進行定量分析.在應用數學建模的方法解決實際問題時,往往需要較大的計算量,這就要用到計算機來處理.計算機模擬以其成本低、時間短、重復性高、靈活性強等特點,被人們稱為是建立數學模型的重要手段之一,由此也可以看出數學建模對提高學生計算機的應用能力的作用是不言而喻的.
當今世界經濟的競爭是高科技的競爭,是人才綜合素質與能力的競爭.數學建模競賽對培養學生的創造性、競爭意識和適應社會應變能力,具有不可低估的作用.所以說進行數學建模的教學與實踐,既適應了知識經濟時代對高等學校人才培養的要求,同時也為創新人才的培養開辟了一條新的途徑.
參考文獻
一、數學建模課程對培養創新人才的作用
(一)提高實踐能力
數學建模課程案例主要來源于多領域中的實際問題,它不僅僅是單一的數學問題,具有數學與多學科交叉、融合等特點。課程要求學生掌握一般數學基礎知識,同時要進一步學習如微分方程、概率統計、優化理論等數學知識。這就需要學生有自主學習“新知識”的能力,還要具備運用綜合知識解決實際問題的能力。因此,數學建模課程對于大學生自學能力和綜合運用知識能力的培養具有重要作用。
(二)提高創新能力
數學建模方法是解決現實問題的一種量化手段。數學建模和傳統數學課程相比,是一種創新性活動。面對實際問題,根據數據和現象分析,用數學語言描述建模問題,再進行科學計算處理,最后反饋到現實中解釋,這一過程沒有固定的標準模式,可以采用不同方法和思路解決同樣的問題,能鍛煉學生的想象力、洞察力和創新能力。
(三)提高科學素質
面對復雜的實際問題,學生不僅要學會發現問題,還要將問題轉化為數學模型,利用數學方法和計算軟件提出方案用于解釋實際問題。由于數學建模知識的寬泛性,需要學生分工合作完成建模過程,各成員的知識結構側重點有所不同,彼此溝通、討論有助于大學生相互交流與協作能力的培養,最終的成果以科學研究論文的形式體現,科學論文撰寫過程提高了學生科學研究的系統性。
二、基于數學建模課程教學全方位推進創新能力培養的實踐
(一)分解教學內容增強課程的適應性
根據學生的接受能力及數學建模的發展趨勢,在保持課程理論體系完整性和知識方法系統性的基礎上,教學內容分解為課堂講授與課后實踐兩部分。課堂教師講授數學建模的基礎理論和基本方法,精講經典數學模型及建模應用案例,啟發學生數學建模思維,激發學生數學建模興趣;課后學生自己動手完成課堂內容擴展、模型運算及模型改進等,教師答疑解惑。課堂教學注重數學建模知識的學習,課后教學重在知識的運用。隨著實際問題的復雜化和多元化,基本的數學建模方法及計算能力滿足不了實際需求。課程教學中還增加了圖論、模糊數學等方法,計算機軟件等初級知識。
(二)融入新的教學方法提高學生的參與度
1.課堂教學融入引導式和參與式教學方法。數學建模涉及的知識很多是學生學過的,對學生熟悉的方法,教師以引導學生回顧知識、增強應用意識為主,借助應用案例重點講授問題解決過程中數學方法的應用,引導學生學習數學建模過程;對于學生不熟悉的方法,則要先系統講授方法,再分析講解方法在案例中的應用,引導學生根據問題尋找方法。此外,為了增強學生學習的積極性和效果,組織1~2次專題研討,要求學生參與教學過程,教師須做精心準備,選擇合適教學內容、設計建模過程、引導學生討論、糾正錯誤觀點。
2.課后實踐實施討論式和合作式教學方法。在課后實踐教學中,提倡學生組成學習小組,教師參與小組討論共同解決建模問題。學生以主動者的角色積極參與討論、獨立完成建模工作,并進行小組建模報告,教師給予點評和糾正。對那些沒有徹底解決的問題,鼓勵學生繼續討論完善。通過學生討論、教師點評、學生完善這一過程,極大地調動了學生參與討論、團隊合作的熱情。同時,教師鼓勵學生自己尋找感興趣的問題,用數學建模去解決問題。
3.課程綜合實踐推進研究式教學方法。指導學生在參加數學建模競賽、學習專業知識、做畢業設計及參與教師科研等工作中,學習深入研究建模解決實際問題的方法,通過多層次建模綜合實踐能提高分析問題、選擇方法、實施建模、問題求解、編程實踐、計算模擬的綜合能力,進而提高創新能力。
(三)融合多種教學手段,提高課程的實效性
1.利用網站教育平臺實施線上課堂教學。線上教學要選取難易適中,不宜太專業化,便于自學,并具有與課堂教學承上啟下功能,服務和鞏固課程的需要的內容,利用互聯網云教育平臺,學習多媒體課件、教學視頻,及通過提供的相關資料來學習。教師還可通過網站問題、解答疑難、組織討論,學生通過網站學習知識、提交解答、參與討論。學生能更有效地利用零散時間,培養自我約束、管理時間的意識和能力。
2.充分利用多媒體課件與黑板書寫相結合的課堂教學手段。根據課堂教學要求,規劃設計制作課件與黑板書寫的具體內容,同時連接好線上的學習成效推進課堂教學。課件主要介紹問題背景、分析假設、建模方法、算法程序和模型結果,而模型推導和分析求解的具體過程,則通過板書展示增加了課堂教學的信息量,也促進學生消化理解難點和技巧。
3.指導學生小組學習的課后教學手段。指導學生以學習小組為單位開展建模學習與實踐活動,提倡不同專業學生之間的相互學習、取長補短,通過學習與討論增強學生自主學習的意識和能力。數學建模過程不是解應用題,雖然沒有唯一途徑,但也有規律可循,在小組學習中發揮團隊力量、提高建模能力。
(四)構建多層次建模問題,培養學生創新能力
案例選擇、教學設計、知識銜接是數學建模在創新型人才培養中的關鍵。
1.課堂教學建模問題。課堂教學通過應用案例講解有關建模方法,所選問題包括兩類:一是基本類型,圍繞大學數學課程主要知識點的簡單建模問題,如物理、日常生活等傳統領域中的建模問題,學生既能學習建模方法又能感受數學知識的應用價值;二是綜合類型,涵蓋幾個數學知識點的綜合建模問題,如SAS的傳播。問題要有一定思考的空間,且在教師的分析和引導下學生能夠展開討論。
2.課后實踐建模問題。課后學生要以學習小組為單位完成教師布置的數學建模問題。問題要圍繞課堂教學內容,難易適當,層次可分,以便學生選擇和討論。同時,問題還要有明確的實際背景,能將數據處理、數值計算有機結合起來。另一方面,鼓勵學生學會發現日常生活和專業學習中的建模問題,引導學生提出正確的思考方向,幫助學生給出解決問題的方案。
(五)組織多元化過程考核,注重學習階段效果
1.課堂內外考試與網上在線考試相結合的過程考核。教師按照教學要求將考試可以分解兩種形式:課堂內結合應用案例組織課堂討論,通過學生參與情況實施考核;課堂外針對基礎知識可實施在線測試,對綜合知識點設計一定量的大作業,根據學生完成情況實施考核,也允許學生自主選題完成大作業。
2.課程教學結束的綜合考核。課程綜合考核重點在于測試學生知識綜合運用能力,可以采取兩種形式之一。一是集中考試法,試題包括有標準答案的基礎知識、課堂講授的建模案例、完全開放的實際問題;考試采取“半開卷”形式,即可以攜帶一本教材,但不能與他人討論。二是建模競賽實踐的考核法。數學建模選修課期間剛好組織東北三省數學建模聯賽和校內數學建模競賽,鼓勵學生參加競賽,依據競賽論文實施考核。
在考核成績評定上,采用綜合計分方式,弱化期末考核權重,加大過程考核分量,注重過程學習,提高考核客觀性。
教師作為教育工作的直接參與者,對提高學校的教學質量發揮著重要的作用,這就需要教師具有實踐教學的教育理念,既要精通理論知識和實踐能力,又要親自指導學生實踐,培養學生實踐能力。在教學模式上,打破傳統的講授教學模式,突出教學內容的實用性,讓實踐教學模式滲透到學生的財經學習過程中,使學生能夠充分利用所學知識提升自己的職業技能。
(二)創新實踐教學手段
學校應該緊跟時展,引進新的教學手段,把傳統的講授教學方式逐步轉變為運用多媒體、電子教程、投影儀等現代化教學方式上來,擺脫以往學習的枯燥乏味,活躍課堂氣氛,提高學生對于所學課程的學習興趣。師生之間加強交流溝通,促進教學質量的改進。再者,中職院校應充分利用已有的教學資源,提高教學效率。建立財經類綜合實踐實訓基地,不斷進行實訓基地各種教學制度的完善,明確自身管理職責,進行綜合實訓基地的統一規劃和管理,實現規范、科學的教學管理[3]。
(三)強化教師團隊建設,培養學生綜合實踐能力
在學校教學過程中,教師是教學活動的組織者和領導者,強化教師團隊建設是提高學生實踐能力的關鍵。在日常實踐教學過程中,應設立專業對口的實訓項目或是與校企單位進行合作,經過專業教師的指導,實現學生真正上崗實踐,通過所學理論在實際工作過程中的運用,能夠加快學生理論知識與實踐能力的整合,增強學生自身對財經類工作崗位的認識,樹立積極的職業觀和價值觀。實踐上崗教學模式,能夠培養學生的探索實踐能力,能夠在實際的實踐工作過程中,按照企業規定嚴格約束自己的行為,培養更多符合社會需要的實踐型人才。通過上崗實踐教學使學生在學習態度上有了重大的轉變,體驗到在企業中生存的基本法則,這種壓力激勵著他們不斷進取,使得學生的探究、分析問題、解決問題的能力得到了很大程度的提升[4]。
2高中數學建模教學出現的問題
目前許多高中數學課本中將有關數學建模的內容都分散于各個教學單元中,使其內容失去了連貫性,學生不能靈活運用數學知識,大大降低了數學建模教學的優勢和目的.另外許多高中生在學習數學建模的過程中存在或多或少的障礙.高中生由于地區或者其他原因,對于現實問題的洞察能力和數據的處理能力均有限,導致數學建模教學不能順利地進行.另外,許多教師對于建模的教育理念存在偏差,不重視數學建模,因此,教學效果也就可想而知.
3加強高中數學建模教學的對策
1)重視各章前問題教學
高中數學課本在每章前面均有一個關于本章教學內容的實際問題,而通過重視各章前問題教學,可以引發學生對于數學建模的興趣,從而使得學生明白數學建模教學的意義.例如,某公園有個大型摩天輪,該摩天輪可以吊起78個客艙,一次能運載350個乘客.坐該摩天輪從開始到最后需要耗時30min,轉速為5m•min-1.問,乘客乘坐該摩天輪時,從摩天輪的最低點開始計時,他所處的高度h與所坐的時間t的關系,并用數學模型解釋.這個章前問題就是典型的運用數學模型來解決生活中的問題,因此,高中數學教學應加強章前問題教學,培養學生重視數學建模的意識.
2)加強數學開放題教學
高中數學教師可以通過加強數學開放題的教學提高數學建模教學效果.因為數學開放題可以鍛煉學生開放性思維和創造性思維.開放題可以接近生活中的現實問題,例如,隨著科技的發展和能源的消耗過剩,現今市場上出現3種汽車類型,一是傳統的以汽油為原料的汽車,二是以蓄電池為動力的車,三是用天然氣作為原料的汽車.通過對這3種類型的車使用原料成本進行分析比較,并建立數學模型,分析汽油價格的變化對這3種車所占市場份額的影響.這種開放性的試題,沒有具體的答案,只要學生所建的數學模型能夠將問題說得通,都算是成功的數學建模.
3)注重案例式教學
注重案例式教學是值得教師學習的提高教學效果最有效的方法.通過分析典型的數學案例理解建模的優勢,提高數學建模的教學效率.例如,甲、乙2人相約到某地相遇,該地距離出發點為20km,他們約定一個人跑步,而另外一個人步行,當跑步者到達某個地方后改為步行,接著步行的人換成跑步,再步行,如此反復轉換,已知跑步的速度是10km•h-1,步行的速度是5km•h-1,問至少花多少時間2人都可以到達目的地.這種相遇問題在數學教學中應該經常見到,這是一種典型的案例題,通過典型案例的數學建模教學,不僅可以讓學生對問題更加印象深刻,而且可以使得學生更容易接受數學建模教學的方式,從而提高數學建模教學的效果.
二、數學模型融入數學課堂教學的必要性
(一)人才培養創新的需要
根據獨立學院人才培養目標和實際情況,有針對性的加大基礎課和實踐環節教學的比重,側重于實踐能力的培養,在專業課程體系中適當增加實驗、實踐教學內容,加強與社會實體的聯系。力求培養出具有實際操作能力的高素質大學生。數學建模是將一個實際問題,對其作出一些必要的簡化與假設,將其轉化成一個數學問題,借助數學工具和數學方法精確或近似地解決該問題,并用數學結果解釋客觀現象、回答實際問題并接受客觀實際的檢驗。數學建模能彌補傳統數學教學在實際應用方面的不足,促進數學教師在現代化教學手段、教學模式方面的更新。數學建模有助于調動學生的學習興趣,在計算機應用能力、實踐能力和創新意識的培養方面都有著非常大的作用,以便學生將來能更好地適應工作崗位。
(二)高校教學改革的需要
當今社會信息高度發達,競爭日益激烈,必須具備一定的創新意識和創新能力,否則很難適應社會信息時代的要求。傳統的教學模式是以課堂理論講授為主,學生絕大部分時間都集中學習書本知識,很少有機會接觸社會,也難做到學以致用。絕大多數課程都是教師的一言堂,考試也是以教師講課內容為主。學生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學導致學生明顯缺乏學習的主動性,會聽從而不會質疑,更不會形成開創性的觀點,很難適應企事業單位動態的工作環境。數學作為一門傳統基礎學科,對獨立學院的學生來說,學習上有一定的難度。我們的教學應以“必需,夠用”為度。數學建模從形式到內容,都與畢業后工作時的條件非常相近,是一次非常好的鍛煉,學生通過自主的學習,把實際的問題轉化為數學理論解決,有助于學生創新能力的培養動手能力的提高,這也正是獨立學院院校應用型本科人才培養的方向。
(三)學生參加數學建模競賽的需要
獨立學院學生思維活躍,且比較注重個人能力素質的提高。很多學生愿意在學校參加一些競賽來提高自己。全國大學生數學建模競賽尤其受學生重視,但仍有很多大學生不了解這類競賽,因此,在數學課堂上引入數學建模思想,學生既了解了數學建模,又對數學公式提起了興趣,還有助于獨立學院學生在全國大學生數學建模競賽中取得優異成績。
目前數學廣泛應用于生物技術、生物醫學工程、現代化醫療器械、醫療診斷方法、藥物動力學以及心血管病理等醫學領域。數學在醫學中的應用引起了醫學的劃時代變革,而這些應用基本上都是通過建模得以實現。長期以來,醫學院校的高等數學課在學生心目中成為可有可無、無關緊要的課程。問題在于課程體系中缺乏一門將數學和醫學有機結合的課程——數學建模。它為醫學和數學之間架設起橋梁,教學內容注重培養學生運用數學知識解決實際問題的能力,同時促進理論知識形式,加深學生對數學概念定理本質的直觀理解,最大限度激發學生學習興趣,對傳統數學教育模式是個沖擊,相應教學方法必須進行改革。
1、醫用數學建模課教學設計改革
1.1 通過醫學問題,設計模型數學情境
本著“學以致用”的原則,醫學院校開設數學建模課與傳統的醫學教學設計不同,數學建模課以實際醫學問題為出發點,學生在具備一定高等數學基礎知識的前提下,以醫學實際問題出發點,要求收集必要的數據,這部分可以留給學生作為課前預習。在處理復雜問題的時候,這個環節關鍵是:抓住問題的主要矛盾,舍去次要因素,對實際問題做適當假設,使復雜問題得到必要的簡化,為下一步模型建立打下基礎,從而在醫學問題中抽象出數學問題情境。
1.2 運用數學知識,設計模型建立[1]
這是整個教學環節成敗的關鍵,醫科高等數學教學有別于理工科,理工科高等數學的學時較多,教學內容設計的系統性強,醫學高等數學更側重于數學在醫學上的應用,并通過醫學問題的解決加深鞏固對數學知識的理解,更深刻掌握。在上一步去粗取精把握主要矛盾的基礎上,設置變量,利用數學工具刻畫數量之間的關系,從而建立數學模型。同樣的問題可以有不同的數學模型,衡量一個模型的優劣全在其作用的效果,而不是采用多么高深的數學方法。模型可以通過理論推導得到結果,也可以運用mathematics或matlab求數值解,教學設計核心問題應設計如何引導學生分析問題,建立模型,發現問題解決方程式。
1.3 檢驗合理性,設計模型完善
建模后引導學生對數學結果進行分析,設計分析求解結果的正確性,求解方程的優越性,知識運用的綜合性分析及求解模型的延續性、穩定性、敏感性分析。進行統計檢驗、誤差分析等,從而檢驗模型合理性,并反復修改模型有關內容,使其更切合實際,這使學生應用數學知識的基礎上進一步深化并結合醫學實際,溫習醫學知識,為臨床實踐打下堅實的基礎。
1.4 分析結論,設計模型回歸實踐
數學建模是運用數學知識,解決醫學實際問題,利用已檢驗的模型,設計、分析、解釋已有的現象,并預測未來的發展趨勢。啟發學生這樣的模型代表特點是什么?可以解決哪類醫學實際問題,并引出運用相同方法可以解決的數學模型問題留做學生課后練習。
2、實例檢驗
在2003年流行性的傳染病SARS爆發,對于復雜的醫學問題適當假設:某地區人口總數N不變;每個病人每天有效接觸平均人數常數λ ;人群分兩類易感染者(S)和已感染者(I);根據假設,建立SARS數學模型NdIdt=λNSI ,得到解I(t)=11+(1I0-1)e-λI ;通過實踐我們發現當∞時,I1 ,即所有人都被感染,這顯然不符合實際,因為忽略了被感染SARS后,個體具有一定的免疫能力,人群還分出一類移出者R(t),設μ 為日治愈率,此時微分方程為:dIdt=λSI-μI
dSdt=λSI
I(0)=I0,S(0)=S0 ,
解得I=(S0+I0)-S+μλ ln SS0 ;引導學生代入北京4月26日到5月15日SARS上報的數據基本復合實際。獲得的結論我們可以運用指導目前蔓延的禽流感疾病,預測流行病的傳播趨勢,及時有效的采取防御措施。
3、采取有效措施,重視教學方法改革
3.1 變革課內教學環節
以學生為主體,把學生知識獲取,個性發展,能力提高放在首位。課堂強化“啟發式”教學,采用“開放式教學方法,減少課堂講授,增加課堂交流時間,將授課變成一次學生參加的科學研究來解決實際問題,引領學生進行創新實踐的嘗試,鼓勵學生大膽發表見解,選用的案例都是醫學實際問題,并通過設計讓學生認識到數學建模的適用性、有效性,在某些案例的講授環節注重講解深度,注意為學生留有充分想象空間,并引導學生思考一系列相關問題,這種建模方法還可以使用到哪類問題中?建模成功的關鍵是什么?運用到哪些數學知識?該數學知識還能解決什么樣的醫學實際問題?
3.2 深化課外實踐改革[2]
數學建模課應通過案例卜椒í踩砑彩道彩笛檎飧鲇行У慕萄模式,建模是一個綜合性的科學,涉及廣泛的數學知識、醫學知識等,采取導學和自學的相結合教學方式,培養學生歸納總結能力和自學能力,在課內引導的基礎上,通過留作業、出開放性思考題的方法引導學生積極收集資料,自學知識的盲點,同時激發學生學習興趣;組建建模小組,小組成員分工合作,運用數學知識解決醫學實際問題,同時培養學生團結協作精神。
4、循序漸進,實施課程考核方式改革
4.1 開卷和閉卷相結合[3]
開卷是布置一個大作業,三、四道醫學類實際問題,同學自由組合3人一組,從資料收集、模型準備、模型假設、計算方法、模型改進、推廣到論文撰寫,教師可以對學生進行全面跟蹤,指導是有度的,教師不干預學生的個性思維,鼓勵尊重個人意見,只是關鍵時刻指出問題所在,在開放開始中使學生成為主體,以小組為單位協作完成一個科研課題,并以書面形式上交,作為開卷考試的成績評定依據。
4.2 鼓勵性加分作為補充
摘要。文稿必須有不超過300字的內容摘要,摘要內容字體為常規,仿宋,五號。摘要應具備獨立性和自含性,應是文章主要觀點的濃縮。摘要前加“[摘要]”作標識,字體為加粗,黑體,五號。
正文。用五號宋體,1.5倍間距。文稿以10000字以下為宜。
文內標題。力求簡短、明確,題末不用標點符號(問號、嘆號、省略號除外)。層次不宜超過5級。第1級標題字體為常規,楷體,小四;第2級標題字體為加粗,宋體,五號;次級遞減。層次序號可采用一.(一).1.(1).1),不宜用①,以與注釋號區別。文內內容字體為常規,宋體,五號。
數字使用。數字用法及計量單位按GBT15835—1995《出版物上數字用法的規定》和1984年12月27日國務院的《中華人民共和國法定計量單位》執行。4位以上數字采用3位分節法。5位以上數字尾數零多的,可以“萬”、“億”作單位。標點符號按GBT15835—1995《標點符號用法》執行。
附表與插圖。附表應有表序、表題、一般采用三線表;插圖應有圖序和圖題。序號用阿拉伯數字標注。常規,楷體,五號。圖序和圖題的字體為加粗,宋體,五號。
引用。引用原文必須核對準確,注明準確出處;凡涉及數字模型和公式的,務請認真核算。
參考文獻。論文應附有參考文獻并遵循相應的格式。參考文獻放在文末?!癧參考文獻]”字體為加粗,黑體,五號;其內容的漢字字體為常規,仿宋,小五。
參考文獻中書籍的表述方式為:
序號作者書名版本(第1版不標注)出版地出版社出版年頁碼
參考文獻中期刊雜志論文的表述方式為:
序號作者論文名雜志名卷期號出版年頁碼
參考文獻中網上資源的表述方式為:
序號作者資源標題網址訪問時間(年月日)
頁眉,頁腳。團隊序號位于論文每頁頁眉的左端。頁碼位于每頁頁腳的中部,用阿拉伯數字從“1”開始連續編號。
論文用A4紙打印出來,并將論文首頁和論文裝訂到一起,一齊上交。
數學建模論文格式
(一)論文形式:科學論文
科學論文是對某一課題進行探討、研究,表述新的科學研究成果或創見的文章。
注意:它不是感想,也不是調查報告。
(二)論文選題:新穎,有意義,力所能及。
要求:
有背景.
應用問題要來源于學生生活及其周圍世界的真實問題,要有具體的對象和真實的數據。理論問題要了解問題的研究現狀及其理論價值。要做必要的學術調研和研究特色。
有價值
有一定的應用價值,或理論價值,或教育價值,學生通過課題的研究可以掌握必須的科學概念,提升科學研究的能力。
有基礎
對所研究問題的背景有一定了解,掌握一定量的參考文獻,積累了一些解決問題的方法,所研究問題的數據資料是能夠獲得的。
有特色
思路創新,有別于傳統研究的新思路;
方法創新,針對具體問題的特點,對傳統方法的改進和創新;
結果創新,要有新的,更深層次的結果。
問題可行
適合學生自己探究并能夠完成,要有學生的特色,所用知識應該不超過初中生(高中生)的能力范圍。
(三)(數學應用問題)數據資料:來源可靠,引用合理,目標明確
要求:
數據真實可靠,不是編的數學題目;
數據分析合理,采用分析方法得當。
(四)(數學應用問題)數學模型:通過抽象和化簡,使用數學語言對實際問題的一個近似描述,以便于人們更深刻地認識所研究的對象。
要求:
抽象化簡適中,太強,太弱都不好;
抽象出的數學問題,參數選擇源于實際,變量意義明確;